同理可得.---------------------7分當且僅當x=y(tǒng)=z時.以上三式等號都成立. 查看更多

 

題目列表(包括答案和解析)

 [番茄花園1] 本題共有2個小題,第一個小題滿分5分,第2個小題滿分8分。

已知數(shù)列的前項和為,且,

(1)證明:是等比數(shù)列;

(2)求數(shù)列的通項公式,并求出n為何值時,取得最小值,并說明理由。

同理可得,當n≤15時,數(shù)列{Sn}單調(diào)遞減;故當n=15時,Sn取得最小值.

 


 [番茄花園1]20.

查看答案和解析>>

已知點),過點作拋物線的切線,切點分別為(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;

(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,

求圓面積的最小值.

【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關(guān)系的運用。

中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。

(3)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值

(Ⅰ)由可得,.  ------1分

∵直線與曲線相切,且過點,∴,即,

,或, --------------------3分

同理可得:,或----------------4分

,∴,. -----------------5分

(Ⅱ)由(Ⅰ)知,,,則的斜率,

∴直線的方程為:,又,

,即. -----------------7分

∵點到直線的距離即為圓的半徑,即,--------------8分

故圓的面積為. --------------------9分

(Ⅲ)∵直線的方程是,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,    ………10分

,

當且僅當,即,時取等號.

故圓面積的最小值

 

查看答案和解析>>

,為常數(shù),離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為,坐標原點恒在以為直徑的圓內(nèi),求實數(shù)的取值范圍。

【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

第二問中,,,

故直線的方程為,即,

所以,同理可得:

借助于根與系數(shù)的關(guān)系得到即,是方程的兩個不同的根,所以

由已知易得,即

解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

(Ⅱ)設(shè),,,

故直線的方程為,即,

所以,同理可得:,

,是方程的兩個不同的根,所以

由已知易得,即

 

查看答案和解析>>

函數(shù)在同一個周期內(nèi),當 時,取最大值1,當時,取最小值

(1)求函數(shù)的解析式

(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?

(3)若函數(shù)滿足方程求在內(nèi)的所有實數(shù)根之和.

【解析】第一問中利用

又因

       函數(shù)

第二問中,利用的圖象向右平移個單位得的圖象

再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到的圖象,

第三問中,利用三角函數(shù)的對稱性,的周期為

內(nèi)恰有3個周期,

并且方程內(nèi)有6個實根且

同理,可得結(jié)論。

解:(1)

又因

       函數(shù)

(2)的圖象向右平移個單位得的圖象

再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到的圖象,

(3)的周期為

內(nèi)恰有3個周期,

并且方程內(nèi)有6個實根且

同理,

故所有實數(shù)之和為

 

查看答案和解析>>

已知三角形的三邊分別為a,b,c,內(nèi)切圓的半徑為r,則三角形的面積S=
1
2
(a+b+c)•r,四面體的四個面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為R,類比三角形的面積可得四面體的體積為( 。

查看答案和解析>>


同步練習(xí)冊答案