即在棱上存在點..使得平面. 查看更多

 

題目列表(包括答案和解析)

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面?

 

查看答案和解析>>

(本小題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱

被平面所截而得. ,的中點.

(Ⅰ)當時,求平面與平面的夾角的余弦值;

(Ⅱ)當為何值時,在棱上存在點,使平面

 

 

 

查看答案和解析>>

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面?

查看答案和解析>>

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

(1)當時,求平面與平面的夾角的余弦值;

(2)當為何值時,在棱上存在點,使平面

查看答案和解析>>

(坐標系與參數方程選做題) 如圖,AB是半徑為1的圓的一條直徑,C是此圓上任意一點,作射線AC,在AC上存在點P,使得AP•AC=1,以A為極點,射線AB為極軸建立極坐標系,則圓的方程為
ρ=2cosθ
ρ=2cosθ
、動點P的軌跡方程為
ρcosθ=
1
2
ρcosθ=
1
2

查看答案和解析>>


同步練習冊答案