題目列表(包括答案和解析)
已知在上是增函數(shù),在上是減函數(shù),且有三個根(。
(I)求的值,并求出和的取值范圍;
(Ⅱ)求證:
(Ⅲ)求的取值范圍,并寫出當取最小值時的的解析式。
函數(shù),則下列命題正確的是 ( )
A.若在和上是增函數(shù),則是增函數(shù);
B.若在和上是減函數(shù),則是減函數(shù);
C。若是偶函數(shù),在上是增函數(shù),則在上也是增函數(shù);
D.若是奇函數(shù),在上是增函數(shù),則在上也是增函數(shù)。
函數(shù)f(x),g(x),h(x)的定義域和值域都是實數(shù)集R,且f(x)為增函數(shù),g(x),h(x)為減函數(shù),則在R上,f[g(x)]是________函數(shù);g[h(x)]是________函數(shù);h[f(x)]是________函數(shù).
設(shè)函數(shù)
(1)當時,求曲線處的切線方程;
(2)當時,求的極大值和極小值;
(3)若函數(shù)在區(qū)間上是增函數(shù),求實數(shù)的取值范圍.
【解析】(1)中,先利用,表示出點的斜率值這樣可以得到切線方程。(2)中,當,再令,利用導數(shù)的正負確定單調(diào)性,進而得到極值。(3)中,利用函數(shù)在給定區(qū)間遞增,說明了在區(qū)間導數(shù)恒大于等于零,分離參數(shù)求解范圍的思想。
解:(1)當……2分
∴
即為所求切線方程。………………4分
(2)當
令………………6分
∴遞減,在(3,+)遞增
∴的極大值為…………8分
(3)
①若上單調(diào)遞增!酀M足要求。…10分
②若
∵恒成立,
恒成立,即a>0……………11分
時,不合題意。綜上所述,實數(shù)的取值范圍是
a+sinx |
2+cosx |
2π |
3 |
2π |
3 |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com