2.已知直線.當(dāng) 時(shí).. 查看更多

 

題目列表(包括答案和解析)

已知直線,當(dāng)k變化時(shí),所有直線都過定點(diǎn)(    )

A.           B.          C.(3,1)        D.(2,1)

查看答案和解析>>

已知直線,給出下列四個(gè)命題:

(1)直線的傾斜角是;

(2)無論如何變化,直線不過原點(diǎn);

(3)無論如何變化,直線總和一個(gè)定圓相切;

(4)當(dāng)直線和兩坐標(biāo)軸都相交時(shí),它和坐標(biāo)軸圍成的三角形的面積不小于1;

其中正確命題的序號(hào)是             .(把你認(rèn)為正確命題的序號(hào)全填上)

 

查看答案和解析>>

已知直線,給出下列四個(gè)命題:
(1)直線的傾斜角是;
(2)無論如何變化,直線不過原點(diǎn);
(3)無論如何變化,直線總和一個(gè)定圓相切;
(4)當(dāng)直線和兩坐標(biāo)軸都相交時(shí),它和坐標(biāo)軸圍成的三角形的面積不小于1;
其中正確命題的序號(hào)是            .(把你認(rèn)為正確命題的序號(hào)全填上)

查看答案和解析>>

已知直線,給出下列四個(gè)命題:
(1)直線的傾斜角是;
(2)無論如何變化,直線不過原點(diǎn);
(3)無論如何變化,直線總和一個(gè)定圓相切;
(4)當(dāng)直線和兩坐標(biāo)軸都相交時(shí),它和坐標(biāo)軸圍成的三角形的面積不小于1;
其中正確命題的序號(hào)是            .(把你認(rèn)為正確命題的序號(hào)全填上)

查看答案和解析>>

已知直線l:y=kx+k+1,拋物線C:y2=4x,定點(diǎn)M(1,1).
(I)當(dāng)直線l經(jīng)過拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;
(II)當(dāng)k(k≠0)變化且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k);若P與M重合時(shí),求x0的取值范圍.

查看答案和解析>>

一、填空題

1. ;   2.;   3.;   4.;    5.;

6.;      7.;   8.3;    9..   10.

11.;   12.;  13.;      14.

二、解答題

15.解:(1)由得:

,

由正弦定理知:  ,

(2),

由余弦定理知:

16.解:(Ⅰ)證明:取的中點(diǎn),連接

因?yàn)?sub>是正三角形,

所以

是正三棱柱,

所以,所以

所以有

因?yàn)?sub>

所以;

(Ⅱ)的三等分點(diǎn),

連結(jié),,

,∴

, ∴

又∵,

平面

17.解 (Ⅰ)設(shè)點(diǎn)P的坐標(biāo)為(x,y),由P(x,y)在橢圓上,得

又由,

所以

   (Ⅱ) 當(dāng)時(shí),點(diǎn)(,0)和點(diǎn)(-,0)在軌跡上.

當(dāng)時(shí),由,得

,所以T為線段F2Q的中點(diǎn).

在△QF1F2中,,所以有

綜上所述,點(diǎn)T的軌跡C的方程是

(Ⅲ) C上存在點(diǎn)M()使S=的充要條件是

由③得,由④得  所以,當(dāng)時(shí),存在點(diǎn)M,使S=;

當(dāng)時(shí),不存在滿足條件的點(diǎn)M.

當(dāng)時(shí),

,

,得

18.解:(1)(或)(

(2)

當(dāng)且僅當(dāng),即V=4立方米時(shí)不等式取得等號(hào)

所以,博物館支付總費(fèi)用的最小值為7500元.

(3)解法1:由題意得不等式:

當(dāng)保護(hù)罩為正四棱錐形狀時(shí),,代入整理得:,解得;

當(dāng)保護(hù)罩為正四棱柱形狀時(shí),,代入整理得:,解得

又底面正方形面積最小不得少于,所以,底面正方形的面積最小可取1.4平方米

解法2. 解方程,即得兩個(gè)根為

由于函數(shù)上遞減,在上遞增,所以當(dāng)時(shí),總費(fèi)用超過8000元,所以V取得最小值 

由于保護(hù)罩的高固定為2米,所以對于相等體積的正四棱錐與正四棱柱,正四棱柱的底面積是正四棱錐底面積的.所以當(dāng)保護(hù)罩為正四棱柱時(shí),保護(hù)罩底面積最小, m2 

又底面正方形面積最小不得少于,所以,底面正方形的面積最小可取1.4平方米

19.解:(Ⅰ)

當(dāng)為增函數(shù);

當(dāng)為減函數(shù),

可知有極大值為

(Ⅱ)欲使上恒成立,只需上恒成立,

設(shè)

由(Ⅰ)知,,

(Ⅲ),由上可知上單調(diào)遞增,

  ①,

 同理  ②

兩式相加得

 

20.解:(1)證明:因?yàn)?sub>

所以

可化為:

當(dāng)且僅當(dāng)時(shí)

 

(2)因?yàn)?sub>

 =

 =

又由可知 =

=

解之得  

故得所以

因此的通項(xiàng)公式為..

   (3)解:

所以

即S的最大值為

三、附加題

21A.(1)∵DE2=EF?EC,∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

     ∵弦AD、BC相交于點(diǎn)E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.

21B.法一:特殊點(diǎn)法

在直線上任取兩點(diǎn)(2、1)和(3、3),…………1分

?即得點(diǎn)  …………3 分

即得點(diǎn)

分別代入上得

則矩陣 …………6 分

     …………10 分

法二:通法

設(shè)為直線上任意一點(diǎn)其在M的作用下變?yōu)?sub>…………1分

…………3分

代入得:

其與完全一樣得

則矩陣         …………6分

           …………10分

21C法一:將直線方程化為,    ………4分

,                       ………6分

設(shè)動(dòng)點(diǎn)P,M,則 ,    ………8分

,得;                        ………10分

法二:以極點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,

將直線方程化為,………………4分

設(shè)P,M,,………6分

又MPO三點(diǎn)共線, …………8分

轉(zhuǎn)化為極坐標(biāo)方程.   ………10分

21D.證明:  ∵a、bc均為實(shí)數(shù).

)≥,當(dāng)a=b時(shí)等號(hào)成立;

)≥,當(dāng)b=c時(shí)等號(hào)成立;

)≥

三個(gè)不等式相加即得++++

當(dāng)且僅當(dāng)a=b=c時(shí)等號(hào)成立.

22.解:(I)以O(shè)為原點(diǎn),OB,OC,OA分別為x,y,z軸建立空間直角坐標(biāo)系.

則有A(0,0,1),B(2,0,0),C(0,2,0),E(0,1,0).

 cos<>

由于異面直線BE與AC所成的角是銳角,故其余弦值是

(II),

設(shè)平面ABE的法向量為

則由,,得

取n=(1,2,2),

平面BEC的一個(gè)法向量為n2=(0,0,1),

由于二面角A-BE-C的平面角是n1與n2的夾角的補(bǔ)角,其余弦值是-

23.解:的所有可能取值有6,2,1,-2;

,

的分布列為:

6

2

1

-2

0.63

0.25

0.1

0.02

 

(2)

(3)設(shè)技術(shù)革新后的三等品率為,則此時(shí)1件產(chǎn)品的平均利潤為

依題意,,即,解得 所以三等品率最多為

 


同步練習(xí)冊答案