題目列表(包括答案和解析)
如圖,已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為、、,
我們稱為橢圓的特征三角形.如果兩個(gè)橢圓的特征三角形是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,且三角形的相似比即為 橢圓的相似比.
(1)已知橢圓和,
判斷與是否相似,如果相似則求出與的相似比,若不相似請(qǐng)說(shuō)明理由;
(2)設(shè)短半軸長(zhǎng)為的橢圓與橢圓相似,試問(wèn)在橢圓上是否存在兩點(diǎn)、關(guān)于直線對(duì)稱,,若存在求出b的范圍,不存在說(shuō)明理由.
定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
(3)如圖:直線l與兩個(gè)“相似橢圓”和分別交于點(diǎn)A,B和點(diǎn)C,D,證明:|AC|=|BD|
定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
(1)若橢圓判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫出與橢圓C1相似且短軸半軸長(zhǎng)為b的焦點(diǎn)在x軸上的橢圓Cb的標(biāo)準(zhǔn)方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
(3)如圖:直線y=x與兩個(gè)“相似橢圓”
分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似的兩個(gè)相似三角形,寫出具體作法.(不必證明)
一、 填空題:
1、 2、 3、128 4、 5、64 6、
7、 8、 9、-4 10、15 11、
12、(1)(2)(5)
二、選擇題:
13、D 14、 C 15、 B 16、 C
17、解:以A為原點(diǎn),以AB、AD、AP所在直線分別軸,
建立空間直角坐標(biāo)系。 -----2分
則 C(2,1,0) N(1,0,1) =(-1,-1,1)---4分
D(0,2,0) M(1,,1) =(1,-,1)---6分
設(shè)與的夾角為,
----8分
---10分
異面直線與所成的角為 -----12分
18、解:延長(zhǎng),作交于D,------4分
設(shè),則
------8分
解得.------10分
故船繼續(xù)朝原方向前進(jìn)有觸礁的危險(xiǎn).-----12
19、解: (1)因?yàn)閒(x+y)=f(x)+f(y),
令x=y=0,代入①式,-----2分
得f(0+0)=f(0)+f(0),即 f(0)=0 --------4分
(2)令y=-x,代入①式,得 f(x-x)=f(x)+f(-x),又f(0)=0,
則有0=f(x)+f(-x).------6分
即f(-x)=-f(x)對(duì)任意x∈R成立,
所以f(x)是奇函數(shù).......8分
(3) f(3)=log3>0,即f(3)>f(0),
又f(x)在R上是單調(diào)函數(shù),所以f(x)在R上是增函數(shù),----10分
又由(1)f(x)是奇函數(shù).
f(k?3)<-f(3-9-2)=f(-3+9+2),
k?3<-3+9+2,
得------12分
------------14分
20、解:(1)為等差數(shù)列,∵,又,
∴ ,是方程的兩個(gè)根
又公差,∴,∴, -------- 2分
∴ ∴ ∴ -----------4分
(2)由(1)知, -----------5分
∴
∴,, ------------7分
∵是等差數(shù)列,∴,∴ ----------8分
∴(舍去) ------------9分
(3)由(2)得 -------------11分
,時(shí)取等號(hào) ------- 13分
,時(shí)取等號(hào)15分
(1)、(2)式中等號(hào)不可能同時(shí)取到,所以 -----------16分
21、解:(1)橢圓與相似. -----2分
因?yàn)?sub>的特征三角形是腰長(zhǎng)為4,底邊長(zhǎng)為的等腰三角形,
而橢圓的特征三角形是腰長(zhǎng)為2,
底邊長(zhǎng)為的等腰三角形,
因此兩個(gè)等腰三角形相似,且相似比為. --- 6分
(2)橢圓的方程為:. --------8分
假定存在,則設(shè)、所在直線為,中點(diǎn)為.
則. -------10分
所以.
中點(diǎn)在直線上,所以有. ----12分
.
. -------14分
(3)橢圓的方程為:.
兩個(gè)相似橢圓之間的性質(zhì)有: 寫出一個(gè)給2分
① 兩個(gè)相似橢圓的面積之比為相似比的平方;
② 分別以兩個(gè)相似橢圓的頂點(diǎn)為頂點(diǎn)的四邊形也相似,相似比即為橢圓的相似比;
③ 兩個(gè)相似橢圓被同一條直線所截得的線段中點(diǎn)重合;
過(guò)原點(diǎn)的直線截相似橢圓所得線段長(zhǎng)度之比恰為橢圓的相似比. ----20分
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com