構成等差數(shù)列. 查看更多

 

題目列表(包括答案和解析)

等差數(shù)列{an}的首項和公差都是
23
,記{an}前n項和為Sn.等比數(shù)列{bn}各項均為正數(shù),公比為q,記{bn}的前n項和為Tn
(Ⅰ) 寫出Si(i=1,2,3,4,5)構成的集合A;
(Ⅱ) 若q為正整數(shù),問是否存在大于1的正整數(shù)k,使得Tk,T2k同時為集合A中的元素?若存在,寫出所有符合條件的{bn}的通項公式;若不存在,請說明理由;
(Ⅲ) 若將Sn中的整數(shù)項按從小到大的順序構成數(shù)列{cn},求{cn}的一個通項公式.

查看答案和解析>>

等差數(shù)列{a}是遞增數(shù)列,前n項和為Sn,且a1,a2,a5成等比數(shù)列,S5=a32
(1)求通項an;
(2)令bn=
1
2
(
an+1
an
+
an
an+1
)
,設Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數(shù)n恒成立,求實數(shù)M、m的取值范圍;
(3)試構造一個函數(shù)g(x),使f(n)=a1g(1)+a2g(2)+…+ang(n)<
1
3
(n∈N+)
恒成立,且對任意的m∈(
1
4
,
1
3
)
,均存在正整數(shù)N,使得當n>N時,f(n)>m.

查看答案和解析>>

等差數(shù)列{a}是遞增數(shù)列,前n項和為Sn,且a1,a2,a5成等比數(shù)列,
(1)求通項an
(2)令bn=,設Tn=b1+b2+…+bn-n,若M>Tn>m對一切正整數(shù)n恒成立,求實數(shù)M、m的取值范圍;
(3)試構造一個函數(shù)g(x),使恒成立,且對任意的,均存在正整數(shù)N,使得當n>N時,f(n)>m.

查看答案和解析>>

設等差數(shù)列{an}的前n項和是Sn,已知S3=9,S6=36.
(1)求數(shù)列{an}的通項公式;
(2)是否存在正整數(shù)m、k,使am,am+5,ak成等比數(shù)列?若存在,求出m和k的值,若不存在,說明理由;
(3)設數(shù)列{bn}的通項公式為bn=3n-2.集合A={x|x=an,n∈N*},B={x|x=bn,n∈N*}.將集合A∪B中的元素從小到大依次排列,構成數(shù)列c1,c2,c3,…,求{cn}的通項公式.

查看答案和解析>>

在等差數(shù)列{an}中,a1142,d=-2,從第一項起,每隔兩項取出一項,構成新的數(shù)列{bn},則此數(shù)列的前n項和Sn取得最大值時n的值是(  )

A23 B24 C25 D26

 

查看答案和解析>>

一、選擇題(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

A

B

B

C

C

A

D

C

D

 

二、填空題(每小題5分,共20分)

11.     8     ;              12. AC⊥BD ( ABCD是正方形或菱形); 

13.         ;              14.           ;

三、解答題(本大題共6小題,共80分. 解答應寫出文字說明、證明過程或演算步驟)

15.(本小題滿分12分)

解:(1)           …………………………1分

      ………………………………2分

.      ………………………………………4分

的最小正周期是.      …………………………………6分

(2)由      …………………….8分

,∴ ∴     …………10分

       ………………………………………………12分

16.(本小題滿分12分)

解:(1)當時,,對任意

      為偶函數(shù)   ……………………3分

      當時,

      取,得    

        函數(shù)既不是奇函數(shù),也不是偶函數(shù)……6分

(2)解法一:要使函數(shù)上為增函數(shù)等價于上恒成立                              ……………8分

上恒成立,故上恒成立

                   …………………………………10分

∴  的取值范圍是           ………………………………12分

解法二:設

    ………8分 

    要使函數(shù)上為增函數(shù),必須恒成立

    ,即恒成立   …………………………………10分

    又  

    的取值范圍是       ………………………………12分

17.(本小題滿分14分)

證明: (1)取PC的中點G,連結FG、EG

∴FG為△CDP的中位線  ∴FGCD……1分

∵四邊形ABCD為矩形,E為AB的中點

∴ABCD     ∴FGAE

∴四邊形AEGF是平行四邊形   ………………2分

∴AF∥EG                       ………3分

又EG平面PCE,AF平面PCE  ………4分

∴AF∥平面PCE   ………………………………………5分

     (2)∵ PA⊥底面ABCD

∴PA⊥AD,PA⊥CD,又AD⊥CD,PAAD=A

∴CD⊥平面ADP

又AF平面ADP         ∴CD⊥AF ……………………………… 6分

直角三角形PAD中,∠PDA=45°

∴△PAD為等腰直角三角形   ∴PA=AD=2   …………………………  7分

∵F是PD的中點

∴AF⊥PD,又CDPD=D

∴AF⊥平面PCD                    ………………………………  8分

∵AF∥EG

∴EG⊥平面PCD                    ……………………………  9分

又EG平面PCE

平面PCE⊥平面PCD                 …………………………… 10分

(3)三棱錐C-BEP即為三棱錐P-BCE     ……………………………11分

PA是三棱錐P-BCE的高,

Rt△BCE中,BE=1,BC=2,

∴三棱錐C-BEP的體積

VC-BEP=VP-BCE= … 14分

18.(本小題滿分14分)

解:(1)由已知得          解得.…………………1分

    設數(shù)列的公比為,由,可得

,可知,即,      …………………4分

解得

由題意得.  .………………………………………… 6分

故數(shù)列的通項為.  … ……………………………………8分

(2)由于    由(1)得

    =  ………………………………………10分

    又

    是首項為公差為的等差數(shù)列            ……………12分

   

        …………………………14分

19.(本小題滿分14分)

解:(1)如圖,設為動圓圓心, ,過點作直線的垂線,垂足為,由題意知:             ……………………………………2分

即動點到定點與到定直線的距離相等,

由拋物線的定義知,點的軌跡為拋物線,其中為焦點,            

為準線, 

∴動圓圓心的軌跡方程為     ……………………………………5分

(2)由題可設直線的方程為

   

   △,    ………………………………………………7分

,,則,  ………………………9分

   由,即 ,于是,……11分

,

   ,解得(舍去),  …………………13分

,   ∴ 直線存在,其方程為       ……………14分

20.(本小題滿分14分)

解:(1)由已知,得,比較兩邊系數(shù),

.      ……………………4分

   (2)令,要有三個不等的實數(shù)根,則函數(shù)

一個極大值和一個極小值,且極大值大于0,極小值小于0.  …………5分

由已知,得有兩個不等的實根,

,     得.……… 6分

,,將代入(1)(3),有,又

,              ………8分

,且處取得極大值,在處取得極小值10分      故要有三個不等的實數(shù)根,

則必須                 ……………… 12分

  解得.                            ………………… 14分

 

 


同步練習冊答案