.由余弦定理得. 查看更多

 

題目列表(包括答案和解析)

如圖, 是邊長為的正方形,平面,,,與平面所成角為.

(Ⅰ)求證:平面

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。

 

查看答案和解析>>

如圖, 是邊長為的正方形,平面,,與平面所成角為.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。

查看答案和解析>>

如圖, 是邊長為的正方形,平面,,,與平面所成角為.

(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn),使得平面?若存在,試確定點(diǎn)的位置;若不存在,說明理由。

查看答案和解析>>

如圖,在直三棱柱A1B1C1-ABC中,AC=AB=AA1=a,∠CAB=900,  D、E分別為棱AA1、A1B1的中點(diǎn)。

(1)求二面角B-C1D-C的平面角的余弦值;

(2)在線段AC上是否存在一點(diǎn)F,使得EF⊥平面C1BD?若存在,確定其位置并證明結(jié)論;若不存在,說明理由.

查看答案和解析>>

在△ABC中,為三個(gè)內(nèi)角為三條邊,

(I)判斷△ABC的形狀;

(II)若,求的取值范圍.

【解析】本題主要考查正余弦定理及向量運(yùn)算

第一問利用正弦定理可知,邊化為角得到

所以得到B=2C,然后利用內(nèi)角和定理得到三角形的形狀。

第二問中,

得到。

(1)解:由及正弦定理有:

∴B=2C,或B+2C,若B=2C,且,∴;∴B+2C,則A=C,∴是等腰三角形。

(2)

 

查看答案和解析>>


同步練習(xí)冊答案