(I)..由得.所以. 查看更多

 

題目列表(包括答案和解析)

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

用n個(gè)不同的實(shí)數(shù)a1,a2,…,an可得到n!個(gè)不同的排列,每個(gè)排列為一行寫成一個(gè)n!行的數(shù)陣。對(duì)第i行,記,i=1,2,3,…,n!。例如:用1,2,3可得數(shù)陣如圖,由于此數(shù)陣中每一列各數(shù)之和都是12,所以,b1+b2+…+b6=-12+2×12-3×12=-24,那么,在用1,2,3,4,5形成的數(shù)陣中,b1+b2+…+b120=
[     ]
A.-3600
B.1800
C.-1080
D.-720

查看答案和解析>>

用n個(gè)不同的實(shí)數(shù)a1,a2,…an可得n!個(gè)不同的排列,每個(gè)排列為一行寫成(1 2 3)

一個(gè)n!行的數(shù)陣.對(duì)第i行ai1,ai2,…ain,記bi=-ai1+2ai2-3ai3+…+(-1)nnain,(1 3 2)

i=1,2,3,…,n。1,2,3可你數(shù)陣如下,由于此數(shù)陣中每一列各數(shù)之和都(2 1 3)是12,所以,b1+b2+…+b6=-12+2×12-3×12=-24.那么,在用1,2,3,4,5形成(2 3 1)的數(shù)陣中,求b1+b2+…+b120的值.(3 1 2)(3 2 1)

查看答案和解析>>

已知拋物線C:y2=ax(a>0),拋物線上一點(diǎn)N(x0, 2
2
) (x0>1)
到拋物線的焦點(diǎn)F的距離是3.
(1)求a的值;
(2)已知?jiǎng)又本l過點(diǎn)P(4,0),交拋物線C于A、B兩點(diǎn).
(i)若直線l的斜率為1,求AB的長(zhǎng);
(ii)是否存在垂直于x軸的直線m被以AP為直徑的圓M所截得的弦長(zhǎng)恒為定值?如果存在,求出m的方程;如果不存在,說明理由.

查看答案和解析>>

如圖,在邊長(zhǎng)為4的菱形ABCD中,∠DAB=60°.點(diǎn)E、F分別在邊CD、CB上,點(diǎn)E與點(diǎn)C、D不重合,EF⊥AC,EF∩AC=O.沿EF將△CEF翻折到△PEF的位置,使平面PEF⊥平面ABFED.
(Ⅰ)求證:BD⊥平面POA;
(Ⅱ)當(dāng)PB取得最小值時(shí),請(qǐng)解答以下問題:
(i)求四棱錐P-BDEF的體積;
(ii)若點(diǎn)Q滿足 (λ>0),試探究:直線OQ與平面PBD所成角的大小是否一定大于?并說明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案