2. “x > 0.y > 0 是的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件 查看更多

 

題目列表(包括答案和解析)

設(shè)f(x)=
x3
3
,對任意實數(shù)t,記gt(x)=t
2
3
x-
2
3
t

(Ⅰ)求函數(shù)y=f(x)-g8(x)的單調(diào)區(qū)間;
(Ⅱ)求證:(。┊(dāng)x>0時,f(x)≥gt(x)對任意正實數(shù)t成立;
(ⅱ)有且僅有一個正實數(shù)x0,使得g8(x0)≥gt(x0)對任意正實數(shù)t成立.

查看答案和解析>>

已知函數(shù)f(x)=x2,對任意實數(shù)t,gt(x)=-tx+1.
(1)求函數(shù)y=g3(x)-f(x)的單調(diào)區(qū)間;
(2)h(x)=
x
f(x)
-gt(x)
在(0,2]上是單調(diào)遞減的,求實數(shù)t的取值范圍;
(3)若f(x)<mg2(x)對任意x∈(0,
1
3
]
恒成立,求正數(shù)m的取值范圍.

查看答案和解析>>

函數(shù)y=x2(x>0)的圖像在點(ak,ak2)處的切線與x軸交點的橫坐標(biāo)為ak+bk為正整數(shù),a1=16,則a1+a3+a5=____ _____

 

查看答案和解析>>

已知曲線C:y= (x>0)及兩點A1(x1,0)和A2(x2,0),其中x2>x1>0.過A1,A2分別作x軸的垂線,交曲線C于B1,B2兩點,直線B1B2與x軸交于點A3(x3,0),那么(  )

A.x1,,x2成等差數(shù)列    B.x1,,x2成等比數(shù)列

C.x1,x3,x2成等差數(shù)列        D.x1,x3,x2成等比數(shù)列

 

查看答案和解析>>

設(shè)函數(shù)f(x)=-sin2ωx-sinωxcosωx(ω>0),y=f(x)圖象的一個對稱中心到最近的對稱軸的距離為.

(1)求ω的值;

(2)f(x)在區(qū)間[π,]上的最大值和最小值.

 

查看答案和解析>>

2009年4月

一、選擇題:本大題共10小題,每題5分,共50分.

1.B    2.A    3.C    4.C    5.B    6.A    7.C    8.A    9.B   10.B

二、填空題:本大題共5小題,每題5分,共25分.

11.4                                      12.                                  13.

14.                                  15.①

三、解答題:本題共6小題,共75分.

16.解:(1)  

 

(2)  

       

 

 

 

17.解:(1) 甲隊以二比一獲勝,即前兩場中甲勝1場,第三場甲獲勝,其概率為

(2) 乙隊以2∶0獲勝的概率為

乙隊以2∶1獲勝的概率為

∴乙隊獲勝的概率為P2=P'2+''2=0.16+0.192=0.352.

18.解:(1) ∵  函數(shù)是定義在R上的奇函數(shù),

∵       ∴ 

處的切線方程為,

∴  ,且, ∴ 

(2)

依題意對任意恒成立,   

對任意恒成立,即對任意恒成立,

19.解法一:(1) 證明:取中點為,連結(jié)、,

               ∵△是等邊三角形, ∴

               又∵側(cè)面底面,

               ∴底面,

               ∴在底面上的射影,

               又∵,

              

               ∴,  ∴,

                ∴,      ∴

(2) 取中點,連結(jié)、,    

    ∵.    ∴

又∵,,

平面,∴,

是二面角的平面角.                  

,

,∴,∴,

∴二面角的大小為                       

解法二:證明:(1) 取中點為,中點為,連結(jié),

∵△是等邊三角形,∴

又∵側(cè)面底面,∴底面,

∴以為坐標(biāo)原點,建立空間直角坐標(biāo)系

如圖,   

,△是等邊三角形,

     ∴

(2) 設(shè)平面的法向量為

   ∴

,則,∴               

設(shè)平面的法向量為,              

,∴,

,則,∴       

,   ∴二面角的大小為.        

20.解:(1) 由題意得,  ①, 

當(dāng)時,,解得

當(dāng)時,有  ②,

①式減去②式得,

于是,,

因為,所以,

所以數(shù)列是首項為,公差為的等差數(shù)列,

所以的通項公式為).

(2) 設(shè)存在滿足條件的正整數(shù),則,,

,,…,,,…,,

所以,,…,均滿足條件,

它們組成首項為,公差為的等差數(shù)列.……(8分)

設(shè)共有個滿足條件的正整數(shù),則,解得.(10分)

所以,中滿足條件的正整數(shù)存在,共有個,的最小值為.(12分)

21.(Ⅰ)法1:依題意,顯然的斜率存在,可設(shè)直線的方程為

,

整理得 . ①

設(shè)是方程①的兩個不同的根,

,   ②

,由是線段的中點,得

,∴

解得,代入②得,的取值范圍是(12,+∞).

于是,直線的方程為,即   

法2:設(shè),,則有

 

依題意,,∴

的中點,∴,,從而

又由在橢圓內(nèi),∴,

的取值范圍是.    

直線的方程為,即.   

(2)  ∵垂直平分,∴直線的方程為,即,

代入橢圓方程,整理得.  ③      

又設(shè),的中點為,則是方程③的兩根,

到直線的距離,

故所求的以線段的中點為圓心且與直線相切的圓的方程為:

 


同步練習(xí)冊答案