如圖4.已知橢圓C:的左.右焦點分別是F1.F2.M是橢圓C的上頂點.橢圓C的右準線與x軸交于點N.且..(Ⅰ)求橢圓C的標準方程, 查看更多

 

題目列表(包括答案和解析)

如圖,已知橢圓C:的左、右焦點為F1、F2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.

(1)求橢圓C的方程;

(2)過點Q(-4,0)任作一直線l交橢圓C于M,N兩

點,記=λ·.若在線段MN上取一點R,使得=-λ·,試判斷當直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程,若不在,請說明理由.

查看答案和解析>>

如圖,已知橢圓C:
x2
b2
+
y2
a2
=1(a>b>0)
的左、右焦點分別為F1(0,c)、F2(0,-c)(c>0),拋物線P:x2=2py(p>0)的焦點與F1重合,過F2的直線l與拋物線P相切,切點E在第一象限,與橢圓C相交于A、B兩點,且
F2B
=λ
AF2

(1)求證:切線l的斜率為定值;
(2)若動點T滿足:
ET
=μ(
EF1
+
EF2
),μ∈(0,
1
2
)
,且
ET
OT
的最小值為-
5
4
,求拋物線P的方程;
(3)當λ∈[2,4]時,求橢圓離心率e的取值范圍.

查看答案和解析>>

如圖,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點為F1,F(xiàn)2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(-4,0)任作一動直線l交橢圓C于M,N兩點,記
MQ
=-λ•
QN
若在線段MN上取一點R,使得
MR
=λ•
RN
,試判斷當直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程;若不在,請說明理由.

查看答案和解析>>

精英家教網(wǎng)如圖,已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左頂點,右焦點分別為A、F,右準線為m.圓D:x2+y2+x-3y-2=0.
(1)若圓D過A、F兩點,求橢圓C的方程;
(2)若直線m上不存在點Q,使△AFQ為等腰三角形,求橢圓離心率的取值范圍.
(3)在(1)的條件下,若直線m與x軸的交點為K,將直線l繞K順時針旋轉
π
4
得直線l,動點P在直線l上,過P作圓D的兩條切線,切點分別為M、N,求弦長MN的最小值.

查看答案和解析>>

如圖,已知橢圓C:數(shù)學公式+數(shù)學公式=1(a>b>0)的左、右焦點為F1,F(xiàn)2,其上頂點為A.已知△F1AF2是邊長為2的正三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點Q(-4,0)任作一動直線l交橢圓C于M,N兩點,記數(shù)學公式=-λ•數(shù)學公式若在線段MN上取一點R,使得數(shù)學公式=λ•數(shù)學公式,試判斷當直線l運動時,點R是否在某一定直線上運動?若在,請求出該定直線的方程;若不在,請說明理由.

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分.

1-5:DBADC; 6-10:BACDC; 11-12:BC.

二、填空題:本大題共4個小題,每小題4分,共16分.

13.1或; 14.-4; 15.1; 16.6.

三、解答題:本大題共6個小題,共74分.解答要寫出文字說明,證明過程或演算步驟.

17.解:(Ⅰ)∵,

,????????????????????????????????????????????????????????????????????????????????????????? 3分

.????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵,

,∴,當且僅當時。ⅲ剑ⅲ??????????? 8分

,∴,?????????????????????????????????????????? 10分

,當且僅當時。ⅲ剑ⅲ

故△ABC面積取最大值為.??????????????????????????????????????????????????????????????????????????? 12分

 

18.解:(Ⅰ)設袋中有黑球n個,則每次取出的一個球是黑球的概率為,       3分

設“連續(xù)取兩次,都是黑球”為事件A,∴,????????????????????????????? 5分

,∴.????????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)由(Ⅰ)知,每次取出一個球,取到紅球的概率是.????????????????????????????? 7分

設“連續(xù)取4次球,取到紅球恰為2次”為事件B,“連續(xù)取4次球,取到紅球恰為3次”為事件C,

;??????????????????????????????????????????????????????????????????????????????? 8分

.????????????????????????????????????????????????????????????????????????????????????? 10分

∴取到紅球恰為2次或3次的概率為

故連續(xù)取4次球,取到紅球恰為2次或3次的概率等于.???????????????????????????????????? 12分

 

19.(Ⅰ)證明:∵四邊形AA1C1C是菱形,∴AA1=A1C1=C1C=CA=1,∴△AA1B是等邊三角形,設O是AA1的中點,連接BO,則BO⊥AA1.???????????????????????????????????????????????????????????????????????????????????????????????? 2分

∵側面ABB1A1⊥AA1C1C,∴BO⊥平面AA1C1C,菱形AA1C1C面積為,知C到AA1的距離為,,∴△AA1C1是等邊三角形,且C1O⊥AA1,又C1O∩BO=O.

∴AA1⊥面BOC1,又BC1Ì面BOC1.∴AA1⊥BC1.???????????????????????????????????????????? 4分

(Ⅱ)解:由(Ⅰ)知OA、OC1、OB兩兩垂直,以O為原點,建立如圖空間直角坐標系,則,,,.則,,.?????????????????????????????????????????????????????????????????????????????????????????????? 5分

是平面ABC的一個法向量,

,則.設A1到平面ABC的距離為d.

.??????????????????????????????????????????????????????????????????????????? 8分

(Ⅲ)解:由(Ⅱ)知平面ABC的一個法向量是,又平面ACC1的一個法向量.∴.?????????????????????????????????????????????????????????????????????? 11分

∴二面角B-AC-C1的余弦值是.???????????????????????????????????????????????????????????????? 12分

 

20.解:(Ⅰ)證明:時,,;????????????????????????????????????????????????? 1分

時,,所以,????????????????????????????????????????? 2分

即數(shù)列是以2為首項,公差為2 的等差數(shù)列.????????????????????????????????????????????? 3分

,,?????????????????????????????????????????????????????????????????????? 4分

時,,當時,.?????????????????????????????? 5分

????????????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)當時,,結論成立.??????????????????????????????????????????????? 7分

時,????????????????????? 8分

????????????????????????????????????????????????????????????????????????? 10分

.?????????????????????????????????????????????????????????????????????????????????????? 11分

綜上所述:.?????????????????????????????????????????????????????? 12分

 

21.解:(Ⅰ)∵,∴.比較系數(shù)得,,.???????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 1分

,,,?????????????????????????????????????????????????????????????????????? 2分

(Ⅱ)由(Ⅰ)知,

,令,得

x

1

2

+

0

-

0

+

0

-

∴函數(shù)有極大值,,極小值.?????????????????? 4分

∵函數(shù)在區(qū)間上存在極值,

???????????????????????????????????????????? 5分

解得

故實數(shù).??????????????????????????????????????????????????????????????????? 6分

(Ⅲ)函數(shù)的圖象與坐標軸無交點,有如下兩種情況:

(?)當函數(shù)的圖象與x軸無交點時,必須有:

???????????????????????????????????????? 7分

,函數(shù)的值域為,

解得.??????????????????????????????????????????????????????????????????????? 8分

(?)當函數(shù)的圖象與y軸無交點時,必須有:

有意義,???????? 9分

解得.????????????????????????????????????????? 10分

由(?)、(?)知,p的范圍是,

故實數(shù)p的取值范圍是.???????????????????????????????????????????????????????????????????????? 12分

22.解:(Ⅰ)設,,

,,,,

.??????????????????????????????????????????????????????????????????????????????? 2分

,∴,∴,∴.??????????????????????????? 4分

則N(c,0),M(0,c),所以,

,則,. ???????????????????????????????????????????????????????????????? 5分

∴橢圓的方程為.??????????????????????????????????????????????????????????????????????????????? 6分

(Ⅱ)∵圓O與直線l相切,則,即,????????????????????????????????? 7分

消去y得

∵直線l與橢圓交于兩個不同點,設,

,

,?????????????????????????????????????????????????????????????? 8分

,???????????????????????????????????????????????????????????????? 9分

,.????????????????????????????????????????????????????????????????????????? 10分

.???????????????????????????????????????? 11分

(或).

,則,,

∴S關于u在區(qū)間單調(diào)遞增,又,?????????????????????????????? 13分

.??????????????????????????????????????????????????????????????????????????????????????????????????? 14分

 

 

 


同步練習冊答案