∴動點的軌跡方程為. 4分注:未去處點(2.0).扣1分 查看更多

 

題目列表(包括答案和解析)

已知,函數(shù)

(1)當時,求函數(shù)在點(1,)的切線方程;

(2)求函數(shù)在[-1,1]的極值;

(3)若在上至少存在一個實數(shù)x0,使>g(xo)成立,求正實數(shù)的取值范圍。

【解析】本試題中導數(shù)在研究函數(shù)中的運用。(1)中,那么當時,  又    所以函數(shù)在點(1,)的切線方程為;(2)中令   有 

對a分類討論,和得到極值。(3)中,設,,依題意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  當時,  又    

∴  函數(shù)在點(1,)的切線方程為 --------4分

(Ⅱ)令   有 

①         當

(-1,0)

0

(0,

,1)

+

0

0

+

極大值

極小值

的極大值是,極小值是

②         當時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

綜上所述   時,極大值為,無極小值

時  極大值是,極小值是        ----------8分

(Ⅲ)設,

求導,得

,    

在區(qū)間上為增函數(shù),則

依題意,只需,即 

解得  (舍去)

則正實數(shù)的取值范圍是(,

 

查看答案和解析>>

設橢圓 )的一個頂點為,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點為,即

,解得橢圓的標準方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當直線斜率不存在時,經(jīng)檢驗不合題意.                    --------5分

②當直線斜率存在時,設存在直線,且,.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

已知動點M(x,y)到點F(4,0)的距離比到直線x+5=0的距離小1,則點M的軌跡方程為( 。

查看答案和解析>>

已知點A(1,0),直線l:y=2x-4,點R是直線l上的一個動點,若P是RA的中點,則點P的軌跡方程為( 。

查看答案和解析>>

已知P為拋物線y=2x2+1上的動點,定點A(0,-1),點M分
PA
所成的比為2,則點M的軌跡方程為( 。
A、y=6x2-
1
3
B、x=6y2-
1
3
C、y=3x2+
1
3
D、y=-3x2-1

查看答案和解析>>


同步練習冊答案