題目列表(包括答案和解析)
已知點(diǎn)(),過點(diǎn)作拋物線的切線,切點(diǎn)分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點(diǎn)為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點(diǎn)為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運(yùn)用。直線與圓的位置關(guān)系的運(yùn)用。
中∵直線與曲線相切,且過點(diǎn),∴,利用求根公式得到結(jié)論先求直線的方程,再利用點(diǎn)P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點(diǎn),∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點(diǎn)到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點(diǎn)為圓心的圓與直線相切∴點(diǎn)到直線的距離即為圓的半徑,即, ………10分
∴
,
當(dāng)且僅當(dāng),即,時(shí)取等號(hào).
故圓面積的最小值.
如圖,在四棱錐P-ABCD中,底面ABCD是矩形,,BC=1,,PD=CD=2.
(I)求異面直線PA與BC所成角的正切值;
(II)證明平面PDC⊥平面ABCD;
(III)求直線PB與平面ABCD所成角的正弦值。
【考點(diǎn)定位】本小題主要考查異面直線所成的角、平面與平面垂直、直線與平面所成的角等基礎(chǔ)知識(shí).,考查空間想象能力、運(yùn)算求解能力和推理論證能力.
如圖所示的長方體中,底面是邊長為的正方形,為與的交點(diǎn),,是線段的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的大。
【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面由,,又,∴平面. 可得證明
(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,,
∴為平面的法向量.∴利用法向量的夾角公式,,
∴與的夾角為,即二面角的大小為.
方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)、,
∴,又點(diǎn),,∴
∴,且與不共線,∴.
又平面,平面,∴平面.…………………4分
(Ⅱ)∵,
∴,,即,,
又,∴平面. ………8分
(Ⅲ)∵,,∴平面,
∴為面的法向量.∵,,
∴為平面的法向量.∴,
∴與的夾角為,即二面角的大小為
(本小題滿分13分)
已知中心在坐標(biāo)原點(diǎn)O的橢圓C經(jīng)過點(diǎn)A(2,3),且點(diǎn)F(2,0)為其右焦點(diǎn)。
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線,使得直線與橢圓C有公共點(diǎn),且直線OA與的距離等于4?若存在,求出直線的方程;若不存在,請(qǐng)說明理由。
【命題意圖】本小題主要考查直線、橢圓等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com