6.2求曲線的方程[教學(xué)目標(biāo)][教學(xué)重點(diǎn)]求曲線方程的一般步驟[教學(xué)難點(diǎn)]求曲線的方程.教學(xué)過程:一.復(fù)習(xí)回顧:師:上一節(jié).我們已經(jīng)建立了曲線的方程.方程的曲線的概念.利用這兩個重要概念.就可以借助于坐標(biāo)系.用坐標(biāo)表示點(diǎn).把曲線看成滿足某種條件的點(diǎn)的集合或軌跡.用曲線上點(diǎn)的坐標(biāo)(x,y)所滿足的方程f(x,y)=0表示曲線.通過研究方程的性質(zhì)間接地來研究曲線的性質(zhì).這一節(jié).我們就來學(xué)習(xí)這一方法. 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)為圓上的動點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于、兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴,

∴直線與曲線總有兩個公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,        ………………10分

也就是,

,即只要  ………………12分  

當(dāng)時,(*)對任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

拋物線C1的方程是(y-2)2=-8(x+2),曲線C2與C1關(guān)于點(diǎn)(-1,1)對稱.
(Ⅰ)求曲線的方程;
(Ⅱ)過點(diǎn)(8,0)的直線l交曲線C2于M、N兩點(diǎn),問在坐標(biāo)平面上能否找到某個定點(diǎn)Q,不論直線l如何變化,總有∠MQN=90°.若找不到,請說明理由;若能找到,寫出滿足要求的所有的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

精英家教網(wǎng)過拋物線C:y2=2px(p>0)上一點(diǎn)M(
p2
,p)
作傾斜角互補(bǔ)的兩條直線,分別與拋物線交于A、B兩點(diǎn).
(1)求證:直線AB的斜率為定值;
(2)已知A、B兩點(diǎn)均在拋物線C:y2=2px(y≤0)上,若△MAB的面積的最大值為6,求拋物線的方程.

查看答案和解析>>

求曲線的方程:
(1)求中心在原點(diǎn),左焦點(diǎn)為F(-
3
,0),且右頂點(diǎn)為D(2,0)的橢圓方程;
(2)求中心在原點(diǎn),一個頂點(diǎn)坐標(biāo)為(3,0),焦距為10的雙曲線方程.

查看答案和解析>>

(2013•汕尾二模)已知F1(-
2
,0),F2(
2
,0)
為平面內(nèi)的兩個定點(diǎn),動點(diǎn)P滿足|PF1|+|PF2|=4,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)判斷原點(diǎn)O關(guān)于直線x+y-1=0的對稱點(diǎn)R是否在曲線Γ包圍的范圍內(nèi)?說明理由.
(注:點(diǎn)在曲線Γ包圍的范圍內(nèi)是指點(diǎn)在曲線Γ上或點(diǎn)在曲線Γ包圍的封閉圖形的內(nèi)部)
(Ⅲ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且
OA
+
OB
+
OC
=
0
.試探究:直線AB與OC的斜率之積是否為定值?證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊答案