(2)如圖3所示.將紙片放在直角坐標(biāo)系中.按上述步驟一.二進(jìn)行操作:①當(dāng)點在點時.與交于點.點的坐標(biāo)是( . ), 查看更多

 

題目列表(包括答案和解析)

如圖所示,已知OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點,點A在x軸上,點C在y軸上,且OA=15,OC=9,在邊AB上選取一點D,將△AOD沿OD翻折,使點A落在BC邊上,記為點E.
(1)求DE所在直線的解析式;
(2)設(shè)點P在x軸上,以點O、E、P為頂點的三角形是等腰三角形,問這樣的點P有幾個,并求出所有滿足條件的點P的坐標(biāo);
(3)在x軸、y軸上是否分別存在點M、N,使四邊形MNED的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

如圖所示,Rt△ABC是一張放在平面直角坐標(biāo)系中的紙片,點C與原點O重合,點A在x軸的正半軸上,點B在y軸的正半軸上,已知OA=3,OB=4.將紙片的直角部分翻折,使點C落在精英家教網(wǎng)AB邊上,記為D點,AE為折痕,E在y軸上.
(1)在如圖所示的直角坐標(biāo)系中,求E點的坐標(biāo)及AE的長.
(2)線段AD上有一動點P(不與A、D重合)自A點沿AD方向以每秒1個單位長度向D點作勻速運動,設(shè)運動時間為t秒(0<t<3),過P點作PM∥DE交AE于M點,過點M作MN∥AD交DE于N點,求四邊形PMND的面積S與時間t之間的函數(shù)關(guān)系式,當(dāng)t取何值時,S有最大值?最大值是多少?
(3)當(dāng)t(0<t<3)為何值時,A、D、M三點構(gòu)成等腰三角形?并求出點M的坐標(biāo).

查看答案和解析>>

如圖所示,在平面直角坐標(biāo)系中,現(xiàn)將一張等腰直角三角形紙片ABC放在第二象限,斜靠在精英家教網(wǎng)兩坐標(biāo)軸上,點B的坐標(biāo)為(-3,1),且拋物線y=ax2+ax-4a經(jīng)過點B.
(Ⅰ)求拋物線的解析式;
(Ⅱ)求點A和點C的坐標(biāo);
(Ⅲ)以AC所在直線為對稱軸,將△ABC折疊,問點B的對稱點B1是否落在拋物線上?再以AC的中點為對稱中心,將△ABC作中心對稱變換,這時點B的對稱點B2是否落在拋物線上?若在,求出它們的坐標(biāo);若不在,請說明理由.

查看答案和解析>>

如圖所示,已知OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點,點A在x軸上,點C在y軸上,且OA=15,OC=9,在邊AB上選取一點D,將△AOD沿OD翻折,使點A落在BC邊上,記為點E.
(1)求DE所在直線的解析式;
(2)設(shè)點P在x軸上,以點O、E、P為頂點的三角形是等腰三角形,問這樣的點P有幾個,并求出所有滿足條件的點P的坐標(biāo);
(3)在x軸、y軸上是否分別存在點M、N,使四邊形MNED的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

如圖所示,已知OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為坐標(biāo)原點,點A在x軸上,點C在y軸上,且OA=15,OC=9,在邊AB上選取一點D,將△AOD沿OD翻折,使點A落在BC邊上,記為點E.
(1)求DE所在直線的解析式;
(2)設(shè)點P在x軸上,以點O、E、P為頂點的三角形是等腰三角形,問這樣的點P有幾個,并求出所有滿足條件的點P的坐標(biāo);
(3)在x軸、y軸上是否分別存在點M、N,使四邊形MNED的周長最。咳绻嬖,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>


同步練習(xí)冊答案