(2)若OP⊥AC, 請(qǐng)你在圖4中畫(huà)出符合題意的圖形.并計(jì)算:的值, 查看更多

 

題目列表(包括答案和解析)

如圖1,△DEF的頂點(diǎn)D在△ABC的邊BC上(不與B、C重合),且∠BAC+∠EDF=180°,AB=k•DF,AC=k•DE,點(diǎn)Q為EF的中點(diǎn),直線DQ交直線AB于點(diǎn)P.
(1)猜想∠BPD與∠FDB的關(guān)系,并加以證明;
(2)當(dāng)△DEF繞點(diǎn)D旋轉(zhuǎn),其他條件不變,(1)中的結(jié)論是否始終成立?若成立,請(qǐng)你寫(xiě)出真命題;若不成立請(qǐng)你在圖2中畫(huà)出相應(yīng)的圖形,并給出正確的結(jié)論(不需要證明).
精英家教網(wǎng)

查看答案和解析>>

如圖1,△DEF的頂點(diǎn)D在△ABC的邊BC上(不與B、C重合),且∠BAC+∠EDF=180°,AB=k•DF,AC=k•DE,點(diǎn)Q為EF的中點(diǎn),直線DQ交直線AB于點(diǎn)P.
(1)猜想∠BPD與∠FDB的關(guān)系,并加以證明;
(2)當(dāng)△DEF繞點(diǎn)D旋轉(zhuǎn),其他條件不變,(1)中的結(jié)論是否始終成立?若成立,請(qǐng)你寫(xiě)出真命題;若不成立請(qǐng)你在圖2中畫(huà)出相應(yīng)的圖形,并給出正確的結(jié)論(不需要證明).

查看答案和解析>>

如圖1,△DEF的頂點(diǎn)D在△ABC的邊BC上(不與B、C重合),且∠BAC+∠EDF=180°,AB=k•DF,AC=k•DE,點(diǎn)Q為EF的中點(diǎn),直線DQ交直線AB于點(diǎn)P.
(1)猜想∠BPD與∠FDB的關(guān)系,并加以證明;
(2)當(dāng)△DEF繞點(diǎn)D旋轉(zhuǎn),其他條件不變,(1)中的結(jié)論是否始終成立?若成立,請(qǐng)你寫(xiě)出真命題;若不成立請(qǐng)你在圖2中畫(huà)出相應(yīng)的圖形,并給出正確的結(jié)論(不需要證明).

查看答案和解析>>

在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究
【小題1】正方形FGCH的面積是         ;(用含a, b的式子表示)
【小題2】類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2—圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

【小題3】聯(lián)想拓展小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖5中畫(huà)出剪拼成的正方形的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>

在圖1中,正方形ABCD的邊長(zhǎng)為a,等腰直角三角形FAE的斜邊AE=2b,且邊AD和AE在同一直線上.
操作示例
當(dāng)2b<a時(shí),如圖1,在BA上選取點(diǎn)G,使BG=b,連結(jié)FG和CG,裁掉△FAG和△CGB并分別拼接到△FEH和△CHD的位置構(gòu)成四邊形FGCH.
思考發(fā)現(xiàn)
小明在操作后發(fā)現(xiàn):該剪拼方法就是先將△FAG繞點(diǎn)F逆時(shí)針旋轉(zhuǎn)90°到△FEH的位置,易知EH與AD在同一直線上.連結(jié)CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°到△CHD的位置.這樣,對(duì)于剪拼得到的四邊形FGCH(如圖1),過(guò)點(diǎn)F作FM⊥AE于點(diǎn)M(圖略),利用SAS公理可判斷△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.進(jìn)而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.
實(shí)踐探究
【小題1】正方形FGCH的面積是         ;(用含a, b的式子表示)
【小題2】類(lèi)比圖1的剪拼方法,請(qǐng)你就圖2—圖4的三種情形分別畫(huà)出剪拼成一個(gè)新正方形的示意圖.

【小題3】聯(lián)想拓展小明通過(guò)探究后發(fā)現(xiàn):當(dāng)b≤a時(shí),此類(lèi)圖形都能剪拼成正方形,且所選取的點(diǎn)G的位置在BA方向上隨著b的增大不斷上移.當(dāng)b>a時(shí)(如圖5),能否剪拼成一個(gè)正方形?若能,請(qǐng)你在圖5中畫(huà)出剪拼成的正方形的示意圖;若不能,簡(jiǎn)要說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案