題目列表(包括答案和解析)
已知橢圓C:(a>b>0),點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),點(diǎn)P(2,)在直線(xiàn)x=上,且|F1F2|=|PF2|,直線(xiàn):y=kx+m為動(dòng)直線(xiàn),且直線(xiàn)與橢圓C交于不同的兩點(diǎn)A、B。
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿(mǎn)足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)取何值時(shí),△ABO的面積最大,并求出這個(gè)最大值.
(08年銀川一中三模理)(12分) 已知橢圓C:(a>b>0),點(diǎn)F1、F2分別是橢圓的左、右焦點(diǎn),點(diǎn)P(2,)在直線(xiàn)x=上,且|F1F2|=|PF2|,直線(xiàn):y=kx+m為動(dòng)直線(xiàn),且直線(xiàn)與橢圓C交于不同的兩點(diǎn)A、B。
(Ⅰ)求橢圓C的方程;
(Ⅱ)若在橢圓C上存在點(diǎn)Q,滿(mǎn)足(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,當(dāng)取何值時(shí),△ABO的面積最大,并求出這個(gè)最大值.
一、選擇題
BBACA DCBBB(分類(lèi)分布求解)
二、填空題
11.{2,7} 12.840 13.1 14.2 15.(圓錐曲線(xiàn)定義)
16.解:(1)由
(2)由余弦定理知:
又
17.解:設(shè)事件A為“小張被甲單位錄取”,B為“被乙單位錄取”,C為“被丙單位錄取”。
(1)小張沒(méi)有被錄取的概率為:
(2)小張被一個(gè)單位錄取的概率為
被兩個(gè)單位同時(shí)錄取的概率為
被三個(gè)單位錄取的概率為:所以分布列為:
ξ
0
1
2
3
P
所以:
18.解:(1)
|