當(dāng)時..此時為減函數(shù), 查看更多

 

題目列表(包括答案和解析)

函數(shù)的定義域?yàn)?0,1](a為實(shí)數(shù))

(1)當(dāng)a=-1時,求函數(shù)y=f(x)的值域;

(2)若函數(shù)y=f(x)在定義域上是減函數(shù),求a的取值范圍;

(3)求函數(shù)y=f(x)在(0,1]上的最大值及最小值,并求出此時x的值.

查看答案和解析>>

若函數(shù)同時滿足下列條件,(1)在D內(nèi)為單調(diào)函數(shù);(2)存在實(shí)數(shù).當(dāng)時,,則稱此函數(shù)為D內(nèi)的等射函數(shù),設(shè)則:

(1) 在(-∞,+∞)的單調(diào)性為         (填增函數(shù)或減函數(shù));(2)當(dāng)為R內(nèi)的等射函數(shù)時,的取值范圍是                          

 

查看答案和解析>>

若函數(shù)同時滿足下列條件,(1)在D內(nèi)為單調(diào)函數(shù);(2)存在實(shí)數(shù),.當(dāng)時,,則稱此函數(shù)為D內(nèi)的等射函數(shù),設(shè)則:
(1) 在(-∞,+∞)的單調(diào)性為        (填增函數(shù)或減函數(shù));(2)當(dāng)為R內(nèi)的等射函數(shù)時,的取值范圍是                          

查看答案和解析>>

設(shè)函數(shù)

(Ⅰ) 當(dāng)時,求的單調(diào)區(qū)間;

(Ⅱ) 若上的最大值為,求的值.

【解析】第一問中利用函數(shù)的定義域?yàn)椋?,2),.

當(dāng)a=1時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

第二問中,利用當(dāng)時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

解:函數(shù)的定義域?yàn)椋?,2),.

(1)當(dāng)時,所以的單調(diào)遞增區(qū)間為(0,),單調(diào)遞減區(qū)間為(,2);

(2)當(dāng)時, >0, 即上單調(diào)遞增,故上的最大值為f(1)=a 因此a=1/2.

 

查看答案和解析>>

設(shè)函數(shù),其中為自然對數(shù)的底數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)記曲線在點(diǎn)(其中)處的切線為,軸、軸所圍成的三角形面積為,求的最大值.

【解析】第一問利用由已知,所以

,得, 所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;

第二問中,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為.

切線軸的交點(diǎn)為,與軸的交點(diǎn)為,

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時,有最大值,此時

解:(Ⅰ)由已知,所以, 由,得,  所以,在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞減; 

在區(qū)間上,,函數(shù)在區(qū)間上單調(diào)遞增;  

即函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.

(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image020.png">,所以曲線在點(diǎn)處切線為.

切線軸的交點(diǎn)為,與軸的交點(diǎn)為

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911301664012899/SYS201207091130522182623148_ST.files/image006.png">,所以,  

, 在區(qū)間上,函數(shù)單調(diào)遞增,在區(qū)間上,函數(shù)單調(diào)遞減.所以,當(dāng)時,有最大值,此時,

所以,的最大值為

 

查看答案和解析>>


同步練習(xí)冊答案