(Ⅲ)證明存在.使得對(duì)任意均成立. 查看更多

 

題目列表(包括答案和解析)

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無(wú)窮數(shù)列{an},使得a2011=2009?若存在,寫出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*;
(3)是否存在滿足(2)中條件的無(wú)窮數(shù)列{an},使得a2011=2009?若存在,寫出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無(wú)窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

已知數(shù)列,滿足,,且對(duì)任意的正整數(shù),均成等比數(shù)列.

(1)求的值;

(2)證明:均成等比數(shù)列;

(3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

 

查看答案和解析>>

已知數(shù)列滿足,,且對(duì)任意的正整數(shù),均成等比數(shù)列.
(1)求的值;
(2)證明:均成等比數(shù)列;
(3)是否存在唯一正整數(shù),使得恒成立?證明你的結(jié)論.

查看答案和解析>>


同步練習(xí)冊(cè)答案