1.(2009四川卷理)若⊙與⊙相交于A、B兩點,且兩圓在點A處的切線互相垂直,則線段AB的長度是 w
[考點定位]本小題考查圓的標(biāo)準(zhǔn)方程、兩直線的位置關(guān)系等知識,綜合題。
解析:由題知,且,又,所以有,∴。
39.(2009年上海卷理)過圓的圓心,作直線分別交x、y正半軸于點A、B,被圓分成四部分(如圖),若這四部分圖形面積滿足則直線AB有( )
(A) 0條 (B) 1條 (C) 2條 (D) 3條
[答案]B
[解析]由已知,得:,第II,IV部分的面積是定值,所以,為定值,即為定值,當(dāng)直線AB繞著圓心C移動時,只可能有一個位置符合題意,即直線AB只有一條,故選B。
38.(2009重慶卷文)圓心在軸上,半徑為1,且過點(1,2)的圓的方程為( )
A. B.
C. D.
[答案]A
解法1(直接法):設(shè)圓心坐標(biāo)為,則由題意知,解得,故圓的方程為。
解法2(數(shù)形結(jié)合法):由作圖根據(jù)點到圓心的距離為1易知圓心為(0,2),故圓的方程為
解法3(驗證法):將點(1,2)代入四個選擇支,排除B,D,又由于圓心在軸上,排除C。
37.(2009重慶卷理)已知以為周期的函數(shù),其中。若方程恰有5個實數(shù)解,則的取值范圍為( )
A. B. C. D.
[答案]B
[解析]因為當(dāng)時,將函數(shù)化為方程,實質(zhì)上為一個半橢圓,其圖像如圖所示,同時在坐標(biāo)系中作出當(dāng)得圖像,再根據(jù)周期性作出函數(shù)其它部分的圖像,由圖易知直線與第二個橢圓相交,而與第三個半橢圓無公共點時,方程恰有5個實數(shù)解,將代入得
令
由
同樣由與第二個橢圓由可計算得
綜上知
36.(2009重慶卷理)直線與圓的位置關(guān)系為( )
A.相切 B.相交但直線不過圓心 C.直線過圓心 D.相離
[答案]B
[解析]圓心為到直線,即的距離,而,選B。
35.(2009福建卷文)若雙曲線的離心率為2,則等于
A. 2 B.
C. D. 1
解析解析 由,解得a=1或a=3,參照選項知而應(yīng)選D.
34.(2009寧夏海南卷文)已知圓:+=1,圓與圓關(guān)于直線對稱,則圓的方程為
(A)+=1 (B)+=1
(C)+=1 (D)+=1
[答案]B
[解析]設(shè)圓的圓心為(a,b),則依題意,有,解得:,對稱圓的半徑不變,為1,故選B。.
33.(2009四川卷理)已知直線和直線,拋物線上一動點到直線和直線的距離之和的最小值是
A.2 B.3 C. D.
[考點定位]本小題考查拋物線的定義、點到直線的距離,綜合題。
解析:直線為拋物線的準(zhǔn)線,由拋物線的定義知,P到的距離等于P到拋物線的焦點的距離,故本題化為在拋物線上找一個點使得到點和直線的距離之和最小,最小值為到直線的距離,即,故選擇A。
解析2:如下圖,由題意可知
32.(2009四川卷理)已知雙曲線的左右焦點分別為,其一條漸近線方程為,點在該雙曲線上,則=
A. B. C .0 D. 4
[考點定位]本小題考查雙曲線的漸近線方程、雙曲線的定義,基礎(chǔ)題。(同文8)
解析:由題知,故,
∴,故選擇C。
解析2:根據(jù)雙曲線漸近線方程可求出雙曲線方程,則左、右焦點坐標(biāo)分別為,再將點代入方程可求出,則可得,故選C。
31.(2009天津卷理)設(shè)拋物線=2x的焦點為F,過點M(,0)的直線與拋物線相交于A,B兩點,與拋物線的準(zhǔn)線相交于C,=2,則BCF與ACF的面積之比=
(A) (B) (C) (D)
[考點定位]本小題考查拋物線的性質(zhì)、三點共線的坐標(biāo)關(guān)系,和綜合運算數(shù)學(xué)的能力,中檔題。
解析:由題知,
又
由A、B、M三點共線有即,故,
∴,故選擇A。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com