4.下列各句中加點成語使用恰當(dāng)?shù)囊豁棥?( )
A. 李春曉老師熱愛教育事業(yè),幾十年如一日,好為人師,為國家培養(yǎng)了大批英才。
B. 我覺得,在快節(jié)奏的現(xiàn)代化生活里,這種與熒屏相映成趣的電視化小說也許會大行其道。
C. 這些年輕的登山運動員決心以無所不為的勇氣,克服重重困難,去征服珠穆朗瑪峰。
D. 美國政府在臺灣問題上的危言危行,只能搬起石頭砸自己的腳。
3.下列各句中沒有語病且句意明確的一句是( )
A.大家都有這樣的經(jīng)驗,早晨腦子是最清醒的時候。
B.有些作品之所以屢屢出現(xiàn)錯誤,是因為作者思想水平低和文字功夫差等原因造成的。
C.我市藥品食品監(jiān)督部門已著手按照誠信度等級對全市食品生產(chǎn)企業(yè)進(jìn)行分類管理,不良記錄的多少,將直接影響企業(yè)的誠信等級
D.在當(dāng)今這個競爭異常激烈的時代,任何一個企業(yè)家都不可能永遠(yuǎn)經(jīng)歷著輝煌而不面對挫折;遇到挫折并不可怕,可怕的是能否從失敗的陰影中走出來。
2.下列各句橫線處應(yīng)填入的詞句,最恰當(dāng)?shù)囊唤M是( )
① 幾年未見,那個頭發(fā)亂蓮蓬、小臉臟兮兮的外甥女嬌嬌,已經(jīng) 得白白凈凈、亭亭玉立了,雖依舊親熱,但矜持了許多。
② 學(xué)生手中的課外讀物五花八門,有的書籍內(nèi)容和插圖甚至低俗得讓人 ,這樣的書籍對青少年的身心健康危害極大。
③ “3.19”大案發(fā)生后,專案組在圈定的幾個嫌疑人被相繼排除之后,只好采取大規(guī)模的摸排行動。經(jīng)過半個月的排查,案情仍無進(jìn)展! , ”正當(dāng)案情陷入困境時,傳來好消息:摸排人員發(fā)現(xiàn)了一條極其重要的線索。
A.出落 不堪入目 山重水復(fù)疑無路,柳暗花明又一村
B.保養(yǎng) 不忍卒讀 山重水復(fù)疑無路,柳暗花明又一村
C.保養(yǎng) 不堪入目 踏破鐵鞋無覓處,得來全不費功夫
D.出落 不忍卒讀 踏破鐵鞋無覓處,得來全不費功夫
1.下列各項中加點字的讀音和書寫全都正確的一項是( )
A.痙(jīng)攣 涇(jīng)渭分明 睚眥(cī)必報 愴(chuàng)然淚下
B.峻(jùn)工 不瘟(wēn)不火 鍥(qiè)而不舍 怙惡不悛(quān)
C.癖(pǐ)好 諄(zhūn)諄告誡 淋漓盡至(zhì) 弱不禁(jīn)風(fēng)
D.駭(hài)異 一抔(póu)黃土 矯揉(róu)造作 頭暈?zāi)?u>眩(xuàn)
(五)用遞推方法解題
11、(03年全國)設(shè){an}是首項為1的正項數(shù)列,且(n+1)a2n+1-nan2+an+1an=0,求它的通項公式是__1/n
12、(04年全國)已知數(shù)列{an}滿足a.1=1,an=a1+2a2+3a3+---+(n-1)an-1 (n>1),則{an}的通項an=______a1=1;an=n2
13、(04年北京)定義“等和數(shù)列”:在一個數(shù)列中,如果每一項與它的后一項的和都為同一個常數(shù),那么這個數(shù)列叫做等和數(shù)列,這個常數(shù)叫做該數(shù)列的公和。
已知數(shù)列是等和數(shù)列,且,公和為5,那么的值為__3___,這個數(shù)列的前n項和的計算公式為__當(dāng)n為偶數(shù)時,;當(dāng)n為奇數(shù)時,
14. (04年全國)已知數(shù)列{an}中,a1=1,a2k=a2k-1+(-1)K,a2k+1=a2k+3k,其中k=1,2,3,…。
(1)求a3,a5; (2)求{an}的通項公式
解:(I)a2=a1+(-1)1=0, a3=a2+31=3.a4=a3+(-1)2=4 a5=a4+32=13, 所以,a3=3,a5=13.
(II) a2k+1=a2k+3k = a2k-1+(-1)k+3k, 所以a2k+1-a2k-1=3k+(-1)k,
同理a2k-1-a2k-3=3k-1+(-1)k-1, a3-a1=3+(-1).
所以(a2k+1-a2k-1)+(a2k-1-a2k-3)+…+(a3-a1)
=(3k+3k-1+…+3)+[(-1)k+(-1)k-1+…+(-1)],
由此得a2k+1-a1=(3k-1)+[(-1)k-1],
于是a2k+1=a2k= a2k-1+(-1)k=(-1)k-1-1+(-1)k=(-1)k=1.
{an}的通項公式為:
當(dāng)n為奇數(shù)時,an=
當(dāng)n為偶數(shù)時,
(四)用函數(shù)方法解題
8、(04年天津)已知數(shù)列{an},那么“對任意的nN+,點Pn(n ,an)都在直線y=x+1上”是“{an}為等差數(shù)列”的( B)
A必要條件 B 充分條件 C 充要條件 D 既不充分也不必要條件
9、(99年上海)已知等差數(shù)列{an}滿足3a4=7a7,且a1>0,Sn是{an}的前n項和,Sn取得最大值,則n=___9______.
10、(01年上海)已知數(shù)列{an}中an=2n-7,(nN+),++--+=_153___
(三)用整體化方法解題
5、(00年)已知等差數(shù)列{an}滿足a1+a2+a3+…+a101=0,則有(C )
A a1+a101>0 B a2+a100<0 C a3+a99=0 D a51=51
6、(02年)若一個等差數(shù)列的前3項和為34,最后3項的和為146,且所有項的和為390,則這個數(shù)列的項數(shù)為(A)
A 13 B 12 C 11 D 10
7、(03年上海)在等差數(shù)列{an}中a5=3,a6=-2,a4+a5+…+a10=-49
(二)用賦值法解題
2、(96年)等差數(shù)列{an}的前m項和為30,前2m項和為100,則它的前3m項和為(C )
A 130 B 170 C 210 D 260
3、(01年)設(shè){an}是公比為q的等比數(shù)列, Sn是{an}的前n項和,若{Sn}是等差數(shù)列,則q=__1_
4、設(shè)數(shù)列{an}的前項的和Sn= (對于所有n1),且a4=54,則a1=__2___
(一)用基本量方法解題
1、(04年浙江)已知等差數(shù)列的公差為2,若a1,a3,a4成等比數(shù)列,則a2= (B )
A -4 B -6 C -8 D -10
例1.已知數(shù)列{a}是公差d≠0的等差數(shù)列,其前n項和為S.
(2)過點Q(1,a),Q(2,a)作直線12,設(shè)l與l的夾角為θ,
證明:(1)因為等差數(shù)列{a}的公差d≠0,所以
Kpp是常數(shù)(k=2,3,…,n).
(2)直線l的方程為y-a=d(x-1),直線l的斜率為d.
例2.已知數(shù)列中,是其前項和,并且,
⑴設(shè)數(shù)列,求證:數(shù)列是等比數(shù)列;
⑵設(shè)數(shù)列,求證:數(shù)列是等差數(shù)列;
⑶求數(shù)列的通項公式及前項和。
分析:由于{b}和{c}中的項都和{a}中的項有關(guān),{a}中又有S=4a+2,可由S-S作切入點探索解題的途徑.
解:(1)由S=4a,S=4a+2,兩式相減,得S-S=4(a-a),即a=4a-4a.(根據(jù)b的構(gòu)造,如何把該式表示成b與b的關(guān)系是證明的關(guān)鍵,注意加強(qiáng)恒等變形能力的訓(xùn)練)
a-2a=2(a-2a),又b=a-2a,所以b=2b ①
已知S=4a+2,a=1,a+a=4a+2,解得a=5,b=a-2a=3 ②
由①和②得,數(shù)列{b}是首項為3,公比為2的等比數(shù)列,故b=3·2.
當(dāng)n≥2時,S=4a+2=2(3n-4)+2;當(dāng)n=1時,S=a=1也適合上式.
綜上可知,所求的求和公式為S=2(3n-4)+2.
說明:1.本例主要復(fù)習(xí)用等差、等比數(shù)列的定義證明一個數(shù)列為等差,等比數(shù)列,求數(shù)列通項與前項和。解決本題的關(guān)鍵在于由條件得出遞推公式。
2.解綜合題要總攬全局,尤其要注意上一問的結(jié)論可作為下面論證的已知條件,在后面求解的過程中適時應(yīng)用.
例3.(04年浙江)設(shè)數(shù)列{an}的前項的和Sn=(an-1) (n+),(1)求a1;a2; (2)求證數(shù)列{an}為等比數(shù)列。
解: (Ⅰ)由,得 ∴ 又,即,得.
(Ⅱ)當(dāng)n>1時,
得所以是首項,公比為的等比數(shù)列.
例4、(04年重慶)設(shè)a1=1,a2=,an+2=an+1-an (n=1,2,---),令bn=an+1-an (n=1,2---)求數(shù)列{bn}的通項公式,(2)求數(shù)列{nan}的前n項的和Sn。
解:(I)因
故{bn}是公比為的等比數(shù)列,且
(II)由
注意到可得
記數(shù)列的前n項和為Tn,則
例5.在直角坐標(biāo)平面上有一點列,對一切正整數(shù),點位于函數(shù)的圖象上,且的橫坐標(biāo)構(gòu)成以為首項,為公差的等差數(shù)列。
⑴求點的坐標(biāo);
⑵設(shè)拋物線列中的每一條的對稱軸都垂直于軸,第條拋物線的頂點為,且過點,記與拋物線相切于的直線的斜率為,求:。
⑶設(shè),等差數(shù)列的任一項,其中是中的最大數(shù),,求的通項公式。
解:(1)
(2)的對稱軸垂直于軸,且頂點為.設(shè)的方程為:
把代入上式,得,的方程為:。
,
=
(3),
T中最大數(shù).
設(shè)公差為,則,由此得
說明:本例為數(shù)列與解析幾何的綜合題,難度較大(1)、(2)兩問運用幾何知識算出,解決(3)的關(guān)鍵在于算出及求數(shù)列的公差。
例6.?dāng)?shù)列中,且滿足
⑴求數(shù)列的通項公式;
⑵設(shè),求;
⑶設(shè)=,是否存在最大的整數(shù),使得對任意,均有成立?若存在,求出的值;若不存在,請說明理由。
解:(1)由題意,,為等差數(shù)列,設(shè)公差為,
由題意得,.
(2)若,
時,
故
(3)
若對任意成立,即對任意成立,
的最小值是,的最大整數(shù)值是7。
即存在最大整數(shù)使對任意,均有
說明:本例復(fù)習(xí)數(shù)列通項,數(shù)列求和以及有關(guān)數(shù)列與不等式的綜合問題.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com