已知等差數(shù)列的公差,對任意,都有
(I)求證:對任意,所有方程均有一個相同的實數(shù)根;
(II)若,方程的另一不同根為,求數(shù)列的前n項和
I)證明見解析.    
(II)
(I)∵,∴,
是方程的相同實數(shù)根.    
(II)∵,∴方程即為,
,∴,∴
所以.                     
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

平面上有一系列點對每個自然數(shù),點位于函數(shù)的圖象上.以點為圓心的⊙軸都相切,且⊙與⊙又彼此外切.若,且 
(1)求證:數(shù)列是等差數(shù)列;
(2)設(shè)⊙的面積為, 求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{}的前n項和為,且,
(1)設(shè),求證:數(shù)列{}是等比數(shù)列;
(2)設(shè),求證:數(shù)列{}是等差數(shù)列;
(3)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列都是等差數(shù)列,其中a1=5,b1=10,且a50+b50=20,則數(shù)列的前50項和為(     )
A.75B.500C.875D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)在等差數(shù)列中,,數(shù)列滿足,且(1)求數(shù)列的通項公式;   (2)求數(shù)列的前項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知動圓Q經(jīng)過點A,且與直線相切,動圓圓心Q的軌跡為曲線C,過定點作與y軸平行的直線且和曲線C相交于點M1,然后過點M1作C的切線和x軸交于點,再過作與y軸平行的直線且和C相交于點M2,又過點M2作C的切線和x軸交于點,如此繼續(xù)下去直至無窮,記△的面積為
(Ⅰ)求曲線C的方程;
(Ⅱ)試求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)為等差數(shù)列的前項和,且,則(   )
A.B.C.2009D.2010

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

我們用部分自然數(shù)構(gòu)造如下的數(shù)表:用aij(i≥j)表示第i行第j個數(shù)(i、j為正整數(shù)),使ail=aii="i" ;每行中的其余各數(shù)分別等于其“肩膀”上的兩個數(shù)之和(第一、二行除外,如圖),設(shè)第n(n為正整數(shù))行中各數(shù)之和為bn
(1)試寫出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推測bn+1和bn的關(guān)系(無需證明);
(2)證明數(shù)列{bn+2}是等比數(shù)列,并求數(shù)列{bn}的通項公式bn;
(3)數(shù)列{ bn}中是否存在不同的三項bp,bq,br(p,q,r為正整數(shù))恰好成等差數(shù)列?若存在求出P,q,r的關(guān)系;若不存在,請說明理由.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


數(shù)列
(1)求證:;
(2)求證:

查看答案和解析>>

同步練習(xí)冊答案