【題目】如圖,在平面直角坐標系中,一次函數(shù)y1ax+b的圖象與反比例函數(shù)y2的圖象交于點A(1,2)B(2,m)

(1)求一次函數(shù)和反比例函數(shù)的表達式;

(2)請直接寫出y1≥y2x的取值范圍;

(3)過點BBEx軸,ADBE于點D,點C是直線BE上一點,若∠DAC30°,求點C的坐標.

【答案】1反比例函數(shù)的解析式為y2一次函數(shù)解析式為y1x+1.(2)當﹣2x0x1時,y1y2.(3)點C的坐標為(1,﹣1)或(1+,﹣1).

【解析】

1)由點A的坐標,利用反比例函數(shù)圖象上點的坐標特征可求出k值,由點B的橫坐標利用反比例函數(shù)圖象上點的坐標特征可求出m值,進而可得出點B的坐標,根據(jù)點A,B的坐標,利用待定系數(shù)法即可求出一次函數(shù)解析式;

2)觀察函數(shù)圖象,由兩函數(shù)圖象的上下位置關(guān)系結(jié)合兩交點的坐標,即可找出y1y2x的取值范圍;

3)由點A,B的縱坐標可得出AD的長度及點D的坐標,在RtADC中,由∠DAC30°可得出CD的長度,再結(jié)合點D的坐標即可求出點C的坐標.

1)∵點A1,2)在反比例函數(shù)y2的圖象上,

2,

k1×22

∴反比例函數(shù)的解析式為y2

∵點B(﹣2,m)在反比例函數(shù)y2的圖象上,

m=﹣1,

∴點B的坐標為(﹣2,﹣1).

A1,2),B(﹣2,﹣1)代入y1ax+b得:

解得:

∴一次函數(shù)解析式為y1x+1

2)由函數(shù)圖象可知:當﹣2≤x0x≥1時,y1y2

3)由題意得:AD2﹣(﹣1)=3,點D的坐標為(1,﹣1).

RtADC中,tanDAC,即,

解得:CD=

當點C在點D的左側(cè)時,點C的坐標為(1,﹣1);

當點C在點D的右側(cè)時,點C的坐標為(1+,﹣1).

∴點C的坐標為(1,﹣1)或(1+,﹣1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小美周末來到公園,發(fā)現(xiàn)在公園一角有一種“守株待兔”游戲.游戲設(shè)計者提供了一只兔子和一個有A、B、C、D、E五個出入口的兔籠,而且籠內(nèi)的兔子從每個出入口走出兔籠的機會是均等的.規(guī)定:

玩家只能將小兔從A、B兩個出入口放入;

如果小兔進入籠子后選擇從開始進入的出入口離開,則可獲得一只價值5元小兔玩具,否則應(yīng)付費3元.

(1)問小美得到小兔玩具的機會有多大?

(2)假設(shè)有100人次玩此游戲,估計游戲設(shè)計者可賺多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線yax2+bx+3(a≠0)經(jīng)過(1,0),且與y軸交于點C

(1)直接寫出點C的坐標   

(2)求a,b的數(shù)量關(guān)系;

(3)點Dt,3)是拋物線yax2+bx+3上一點(點D不與點C重合).

t=3時,求拋物線的表達式;

3<CD<4時,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2﹣2mx+m2+1(m為常數(shù)),當自變量x的值滿足﹣3≤x≤﹣1時,與其對應(yīng)的函數(shù)值y的最小值為5,則m的值為( 。

A. 1或﹣3 B. ﹣3或﹣5 C. 1或﹣1 D. 1或﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx24x+3

1)求該二次函數(shù)與x軸的交點坐標和頂點;

2)在所給坐標系中畫出該二次函數(shù)的大致圖象,并寫出當y0時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小松設(shè)計的做圓的內(nèi)接等腰直角三角形的尺規(guī)作圖過程.

已知:⊙O.

求作:⊙O的內(nèi)接等腰直角三角形.

作法:如圖,

①作直徑AB;

②分別以點A,B為圓心,以大于的同樣長為半徑作弧,兩弧交于M,N兩點;

③作直線MN交⊙O于點CD;

④連接ACBC

所以ABC就是所求作的三角形.

根據(jù)小松設(shè)計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵AB是直徑, C是⊙O上一點

ACB= ( ) (填寫推理依據(jù))

AC=BC( )(填寫推理依據(jù))

∴△ABC是等腰直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yax2+bx+ca,b,c為常數(shù),且a≠0)中的xy的部分對應(yīng)值如下表給出了以下結(jié)論:

x

3

2

1

0

1

2

3

4

5

y

12

5

0

3

4

3

0

5

12

①二次函數(shù)yax2+bx+c有最小值,最小值為﹣3;②當﹣x2時,y0;③二次函數(shù)yax2+bx+c的圖象與x軸有兩個交點,且它們分別在y軸的兩側(cè);④當x1時,yx的增大而減小.則其中正確結(jié)論有(

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O上依次有A、B、C三點,BO的延長線交⊙OE,,過點CCDABBE的延長線于D,AD交⊙O于點F

1)求證:四邊形ABCD是菱形;

2)連接OA、OF,若∠AOF3FOEAF3,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下小明從中任意抽取一張記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張計算小明和小亮抽得的兩個數(shù)字之和若和為奇數(shù),則小明勝;若和為偶數(shù)則小亮勝

(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率

(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由

查看答案和解析>>

同步練習(xí)冊答案