【題目】如圖,在正方形ABCD中,E為邊AB上一點,沿DE將折疊得到,延長EF交BC于點G,連接DG,過點E作EH⊥DE交DG的延長線于點H,連接BH.
(1)求證:GF=GC;
(2)探求BH與AE數(shù)量關系,并說明理由.
【答案】(1)見解析;(2),理由見解析
【解析】
(1)根據(jù)對稱得△ADE≌△FDE,再由HL證明Rt△DFG≌Rt△DCG,可得結論;
(2)作如圖輔助線,構建全等三角形,證明△ADE≌△PEH,得AD=PE,AE=PH,再說明△BPH是等腰直角三角形,即可得結論.
(1)∵四邊形ABCD是正方形,
∴DA=DC,∠A=∠C=90°,
∵沿DE將折疊得到,
∴△ADE≌△FDE,
∴DA=DF=DC,∠DFE=∠A=90°,
∴∠DFG=90°,
在Rt△DFG和Rt△DCG中,
,
∴Rt△DFG≌Rt△DCG(HL),
∴GF=GC;
(2),
理由如下:過點H作HP⊥AB,垂足為P,
由(1)知,∠ADE=∠FDE,∠FDG=∠CDG,
∵∠ADC=90°,
∴∠EDG=45°,
∵EH⊥DE,
∴是等腰直角三角形,
∴DE=EH,
∵∠ADE+∠AED=∠AED+∠PEH=90°,
∴∠ADE=∠PEH,
在△ADE和△PEH中,
,
∴△ADE≌△PEH,
∴AD=PE,AE=PH,
∴AD=AB=EP,
∴AE=BP=PH,
∴△BPH為等腰直角三角形,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,四邊形OACB為菱形,OB在x軸的正半軸上,∠AOB=60°,過點A的反比例函數(shù)y= 的圖像與BC交于點F,則△AOF的面積為 ______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的頂點A(1,1),B(3,1),規(guī)定把△ABC“先沿x軸翻折,再向左平移1個單位”為一次變換,這樣連續(xù)經(jīng)過2020次變換后,等邊△ABC的頂點C的坐標為( )
A.(-2 020,)B.(-2 019,)
C.(-2 018,)D.(-2 017,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀念品,已知每件進價為6元,當銷售單價定為8元時,每天可以銷售200件.市場調(diào)查反映:銷售單價每提高1元,日銷量將會減少10件,物價部門規(guī)定:銷售單價不能超過12元,設該紀念品的銷售單價為x(元),日銷量為y(件),日銷售利潤為w(元).
(1)求y與x的函數(shù)關系式.
(2)要使日銷售利潤為720元,銷售單價應定為多少元?
(3)求日銷售利潤w(元)與銷售單價x(元)的函數(shù)關系式,當x為何值時,日銷售利潤最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形ABCD中,AC⊥BD于點O,AO=CO=4,BO=DO=3,點P為線段AC上的一個動點.過點P分別作PM⊥AD于點M,作PN⊥DC于點N. 連接PB,在點P運動過程中,PM+PN+PB的最小值等于_________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點A(1,4)和點B(n,).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當一次函數(shù)的值小于反比例函數(shù)的值時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點M,N;②作直線MN交直線AB于點D,連接CD.若∠ABC=40°,∠ACD=30°,則∠BAC的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,E為AB邊上一點,將△BEC沿CE翻折,點B落在點F處,當△AEF為直角三角形時,BE=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,CD與⊙O相切于C,BE∥CO.
(1)求證:BC是∠ABE的平分線;
(2)若DC=8,⊙O的半徑OA=6,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com