【題目】解方程:
(1)4(x﹣2)2﹣49=0.
(2)x2﹣5x﹣7=0.
(3)(2x+1)(x﹣2)=3.
(4)3x(x﹣2)=2(2﹣x).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一垂直于地面的燈柱AB被一鋼筋CD固定,CD與地面成45°夾角(∠CDB=45°),在C點上方2米處加固另一條鋼線ED,ED與地面成53°夾角(∠EDB=53°),那么鋼線ED的長度約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某報社為了了解市民“獲取新聞的最主要途徑”,開展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下三種不完整的統(tǒng)計圖表.
組別 | 獲取新聞的最主要途徑 | 人數(shù) |
電腦上網(wǎng) | 280 | |
手機上網(wǎng) | ||
電視 | 140 | |
報紙 | ||
其他 | 80 |
請根據(jù)圖表信息解答下列問題:
(1)統(tǒng)計表中的 , ,并請補全條形統(tǒng)計圖;
(2)扇形統(tǒng)計圖中“”所對應(yīng)的圓心角的度數(shù)是 ;
(3)若該市約有100萬人,請你估計其中將“電腦上網(wǎng)”和“手機上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點、的橫坐標分別為、,二次函數(shù)的圖像經(jīng)過點、,且滿足 (為常數(shù)).
(1)若一次函數(shù)的圖像經(jīng)過、兩點.
①當(dāng)、時,求的值;
②若隨的增大而減小,求的取值范圍.
(2)當(dāng)且、時,判斷直線與軸的位置關(guān)系,并說明理由;
(3)點、的位置隨著的變化而變化,設(shè)點、運動的路線與軸分別相交于點、,線段的長度會發(fā)生變化嗎?如果不變,求出的長;如果變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B兩點在數(shù)軸上,點A在原點O的左邊,表示的數(shù)為﹣10,點B在原點的右邊,且BO=3AO.點M以每秒3個單位長度的速度從點A出發(fā)向右運動.點N以每秒2個單位長度的速度從點O出發(fā)向右運動(點M,點N同時出發(fā)).
(1)數(shù)軸上點B對應(yīng)的數(shù)是 ,點B到點A的距離是 ;
(2)經(jīng)過幾秒,原點O是線段MN的中點?
(3)經(jīng)過幾秒,點M,N分別到點B的距離相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線。將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG。則下列結(jié)論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結(jié)論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點A表示﹣3,點B表示5,點C表示m.
(1)若點A與點B同時出發(fā)沿數(shù)軸負方向運動,兩點在點C處相遇,點A的運動速度為1單位長度/秒,點B的運動速度為3單位長度/秒,求m.
(2)若A,C兩點之間的距離為2,求B、C兩點之間的距離.
(3)若m=0,在數(shù)軸上是否存在一點P,使P到A、B、C的距離和等于12?若存在,請求點P對應(yīng)的數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△OAB如圖所示放置在平面直角坐標系中,直角邊OA與x軸重合,∠OAB=90°,OA=4,AB=2,把Rt△OAB繞點O逆時針旋轉(zhuǎn)90°,點B旋轉(zhuǎn)到點C的位置,一條拋物線正好經(jīng)過點O,C,A三點.
(1)求該拋物線的解析式;
(2)在x軸上方的拋物線上有一動點P,過點P作x軸的平行線交拋物線于點M,分別過點P,點M作x軸的垂線,交x軸于E,F(xiàn)兩點,問:四邊形PEFM的周長是否有最大值?如果有,請求出最值,并寫出解答過程;如果沒有,請說明理由.
(3)如果x軸上有一動點H,在拋物線上是否存在點N,使O(原點)、C、H、N四點構(gòu)成以O(shè)C為一邊的平行四邊形?若存在,求出N點的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com