【問題】如圖1、2是底面為1cm,母線長為2cm的圓柱體和圓錐體模型.現(xiàn)要用長為2πcm,寬為4cm的長方形彩紙(如圖3)裝飾圓柱、圓錐模型表面.已知一個圓柱和一個圓錐模型為一套,長方形彩紙共有122張,用這些紙最多能裝飾多少套模型呢?
【對話】老師:“長方形紙可以怎么裁剪呢?”
學(xué)生甲:“可按圖4方式裁剪出2張長方形.”
學(xué)生乙:“可按圖5方式裁剪出6個小圓.”
學(xué)生丙:“可按圖6方式裁剪出1個大圓和2個小圓.”
老師:盡管還有其他裁剪方法,但為裁剪方便,我們就僅用這三位同學(xué)的裁剪方法!
【解決】(1)計算:圓柱的側(cè)面積是 4πcm2,圓錐的側(cè)面積是 2cm2.
(2)1張長方形彩紙剪拼后最多能裝飾 2個圓錐模型;5張長方形彩紙剪拼后最多能裝飾 6個圓柱體模型.
(3)求用122張彩紙對多能裝飾的圓錐、圓柱模型套數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
已知二次函數(shù)y=a(x-1)2-4的圖象經(jīng)過點(3,0).
(1)求a的值;
(2)若A(m,y1)、B(m+n,y2)(n>0)是該函數(shù)圖象上的兩點,當(dāng)y1=y2時,求m、n之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知一次函數(shù)與反比例函數(shù)中,x與y的對應(yīng)值如下表:
x | -3 | -2 | -1 | 1 | 2 | 3 |
| -3 |
| 0 | 3 |
| 6 |
| -1 |
| -3 | 3 |
| 1 |
則不等式>的解為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
根據(jù)下列表格中的對應(yīng)值,判斷方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的個數(shù)是( )
A.0 B.1 C.2 D.1或2
x | 6.17 | 6.18 | 6.19 | 6.20 |
y=ax2+bx+c | 0.02 | -0.01 | 0.02 | 0.04 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC上的中線BD的反向延長線交y軸負半軸于點E,雙曲線(x>0)的圖像經(jīng)過點A,若則k=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
九年級(10)班數(shù)學(xué)進行了六次測試,其中李明六次成績分別為:110、98、97、103、105、105,則他的中位數(shù)和眾數(shù)分別是( )
A.100、105 B.104、105 C.105、105 D.103、105
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖在平面直角坐標系xoy中,正方形OABC的邊長為2厘米,點A、C分別在y軸的負半軸和x軸的正半軸上.拋物線y=ax2+bx+c經(jīng)過點A ,B和點 D(4, )
(1)求拋物線的解析式;
(2)如果點P由點A開始沿AB邊以2厘米/秒的速度向點B移動,同時點Q由B點開始沿BC邊以1厘米/秒的速度向點C移動.若P、Q中有一點到達終點,則另一點也停止運動,設(shè)P、Q兩點移動的時間為t秒,S=PQ2(厘米2)
寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍,當(dāng)t為何值時,S最小;
(3)當(dāng)s取最小值時,在拋物線上是否存在點R,使得以P、B、Q、R為頂點的四邊形是平行四邊形?如果存在,求出點R的坐標;如果不存在,請說明理由.
(4)在拋物線的對稱軸上求出點M,使得M到D,A距離之差最大?寫出點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com