【題目】在下面的網(wǎng)格圖中,每個小正方形的邊長均為1,ABC的三個頂點(diǎn)都是網(wǎng)格線的交點(diǎn),已知B,C兩點(diǎn)的坐標(biāo)分別為(-1,-1),(1,-2),將ABC繞著點(diǎn)C順時針旋轉(zhuǎn)90°得到A′B′C′.

(1)在圖中畫出A′B′C′并寫出點(diǎn)A的對應(yīng)點(diǎn)A′坐標(biāo);

(2)求出在ABC旋轉(zhuǎn)的過程中,點(diǎn)A經(jīng)過的路徑長.

【答案】(1)畫圖見解析,點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為(5,-1);(2)點(diǎn)A經(jīng)過的路徑長

【解析】試題分析: (1)先利用B,C兩點(diǎn)的坐標(biāo)畫出直角坐標(biāo)系得到A點(diǎn)坐標(biāo),再畫出ABC繞點(diǎn)C順時針旋轉(zhuǎn)90°后點(diǎn)A的對應(yīng)點(diǎn)的A′、B′,然后寫出點(diǎn)A′、B′的坐標(biāo)即可.

(2)求得AC的長,然后根據(jù)弧長公式求得即可.

試題解析:

解:⑴ 如圖,A點(diǎn)坐標(biāo)為(0,2),

ABC繞點(diǎn)C順時針旋轉(zhuǎn)90°,則點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo)為(5,-1).

點(diǎn)A經(jīng)過的路徑長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)若a216,|b|3,且ab0,求a+b的值;

2)已知a、b互為相反數(shù)且a≠0,c、d互為倒數(shù),m的絕對值是5,求m2﹣(﹣1+a+b)﹣cd的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,并回答問題.我們知道|a|的幾何意義是指數(shù)軸上表示數(shù)的點(diǎn)與原點(diǎn)的距離,那么|a-b|的幾何意義又是什么呢?我們不妨考慮一下,取特殊值時的情況.比如考慮|5-(-6)|的幾何意義,在數(shù)軸上分別標(biāo)出表示-65的點(diǎn),(如圖所示),兩點(diǎn)間的距離是11,而|5-(-6)|=11,因此不難看出|5-(-6)|就是數(shù)軸上表示-65兩點(diǎn)間的距離.

1|a-b|的幾何意義是_______;

2)當(dāng)|x-2|=2時,求出x的值.

3)設(shè)Q=|x+6|-|x-5|,請問Q是否存在最大值,若沒有請說明理由,若有,請求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD,AB6,AD8,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)θθ360°)得到矩形AEFG,當(dāng)θ_____°時,GCGB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一黃金周期間,某景點(diǎn)門票價格為:成人票每張80元,兒童票每張20元,甲旅行團(tuán)有x名成人和y名兒童;乙旅行團(tuán)的成人數(shù)是甲旅行團(tuán)的2倍,兒童數(shù)是甲旅行團(tuán)的

1)甲、乙兩個旅行團(tuán)在該景點(diǎn)的門票費(fèi)用分別為:甲   元;乙   元;(用含x、y的代數(shù)式表示)

2)若x10,y6,求兩個旅行團(tuán)門票費(fèi)用的總和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正在建設(shè)的成都第二繞城高速全長超過220公里,串起我市二、三圈層以及周邊的廣漢、簡陽等地,總投資達(dá)290億元,用科學(xué)計數(shù)法表示290億元應(yīng)為( )

A. 290× B. 290×

C. 2.90× D. 2.90×

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市公交公司為應(yīng)對春運(yùn)期間的人流高峰,計劃購買AB兩種型號的公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車3輛,共需650萬元,

(1)試問該公交公司計劃購買A型和B型公交車每輛各需多少萬元?

(2)若該公司預(yù)計在某條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費(fèi)用W不超過1200萬元,且確保這10輛公交車在某條線路的年均載客量總和不少于680萬人次,則該公司有哪幾種購車方案?哪種購車方案的總費(fèi)用W最少?最少總費(fèi)用是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【問題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時問小娟這樣一個問題:已知α為銳角,且sin α=,求sin 2α的值.

小娟是這樣給小蕓講解的:

如圖①,在⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°. 設(shè)∠BAC=α,則sin α=.易得∠BOC=2α.設(shè)BC=x,則AB=3x,AC=2 x.CDABD,求出CD=________(用含x的式子表示),可求得sin 2α==________.

【問題解決】已知,如圖②,點(diǎn)M,N,P為⊙O上的三點(diǎn),且∠P=β,sin β=,求sin 2β的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,A1、P兩點(diǎn)表示的數(shù)分別為13,A1A2關(guān)于O對稱,A2A3關(guān)于點(diǎn)P對稱,A3A4關(guān)于點(diǎn)O對稱,A4A5關(guān)于點(diǎn)P對稱依次規(guī)律,則點(diǎn)A15表示的數(shù)是_____

查看答案和解析>>

同步練習(xí)冊答案