【題目】【問(wèn)題學(xué)習(xí)】小蕓在小組學(xué)習(xí)時(shí)問(wèn)小娟這樣一個(gè)問(wèn)題:已知α為銳角,且sin α=,求sin 2α的值.

小娟是這樣給小蕓講解的:

如圖①,在⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°. 設(shè)∠BAC=α,則sin α=.易得∠BOC=2α.設(shè)BC=x,則AB=3x,AC=2 x.CDABD,求出CD=________(用含x的式子表示),可求得sin 2α==________.

【問(wèn)題解決】已知,如圖②,點(diǎn)M,N,P為⊙O上的三點(diǎn),且∠P=β,sin β=,求sin 2β的值.

【答案】;sin 2β=.

【解析】試題分析:(1)如圖1中,⊙O中,AB是直徑,點(diǎn)C在⊙O上,所以∠ACB=90°,作CD⊥ABD.設(shè)∠BAC=α,則sinα==,可設(shè)BC=x,則AB=3x.利用面積法求出CD= ,在Rt△COD中, sin2α==.(2)如圖2中,連接NO,并延長(zhǎng)交⊙O于點(diǎn)Q,連接MQ,MO,過(guò)點(diǎn)MMR⊥NO于點(diǎn)R.先證明∠MON=2∠Q=2β,在Rt△QMN中,由sinβ=,設(shè)MN=3k,則NQ=5k,易得OM=NQ=,可得MQ==4k,由MNMQ=NQMR,求出MR=,Rt△MRO中,根據(jù)sin2β=sin∠MON=,計(jì)算即可求得sin 2β的值

試題解析:

(1)

(2)如圖,連接NO,并延長(zhǎng)交⊙O于點(diǎn)Q,連接MQ,MO,過(guò)點(diǎn)MMRNO于點(diǎn)R.

在⊙O中,∠NMQ=90°.

∵∠Q=P=β,

∴∠MON=2Q=2β.

RtQMN中,

sin β=

∴設(shè)MN=3k,則NQ=5k,

MQ==4k,

OM=NQ=k.

SNMQMN·MQ=NQ·MR,

3k·4k=5k·MR.

MR=k.

RtMRO中,

sin 2β=sin ∠MON=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,OAB上,以O為圓心,OB長(zhǎng)為半徑的圓與BC交于點(diǎn)D,DEACE.

(1)求證:DE是⊙O的切線;

(2)AC與⊙O相切于F,AB=5,sinA,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下面的網(wǎng)格圖中,每個(gè)小正方形的邊長(zhǎng)均為1,ABC的三個(gè)頂點(diǎn)都是網(wǎng)格線的交點(diǎn),已知B,C兩點(diǎn)的坐標(biāo)分別為(-1,-1),(1,-2),將ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到A′B′C′.

(1)在圖中畫出A′B′C′并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)A′坐標(biāo);

(2)求出在ABC旋轉(zhuǎn)的過(guò)程中,點(diǎn)A經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在下面直角坐標(biāo)系中,已知

(1)的面積

(2)若以點(diǎn)為頂點(diǎn)畫平行四邊形,則請(qǐng)你“利用平移的知識(shí)”直接寫出符合條件的所有的平行四邊形的第四個(gè)頂點(diǎn)的坐標(biāo)

(3)是否存在軸上的點(diǎn),使的面積是的面積的倍,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為3cm,∠ABE=,且AB=AE,則DE的長(zhǎng)度為(

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),∠COD是直角,OE平分∠BOC

1)如圖(1),若∠AOC=,求∠DOE的度數(shù);

2)如圖(2),將∠COD繞頂點(diǎn)O旋轉(zhuǎn),且保持射線OC在直線AB上方,在整個(gè)旋轉(zhuǎn)過(guò)程中,當(dāng)∠AOC的度數(shù)是多少時(shí),∠COE=2DOB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過(guò)15m/s,在一條筆直公路BD的上方A處有一探測(cè)儀,如圖,AD=24m,D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°.

1)求B,C的距離.

2)通過(guò)計(jì)算,判斷此轎車是否超速.(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明有5張寫著不同數(shù)字的卡片,請(qǐng)按要求抽出卡片,完成下列各問(wèn)題:

1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,如何抽?最大值是多少?答:我抽取的2張卡片是________、________,乘積的最大值為________

2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,如何抽?最小值是多少?答:我抽取的2張卡片是________、________,商的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義一種對(duì)正整數(shù)n的“F”運(yùn)算:①當(dāng)n為奇數(shù)時(shí),結(jié)果是3n+5;②n為偶數(shù)時(shí),結(jié)果是(其中k是使為奇數(shù)的正整數(shù)),并且運(yùn)算重復(fù)進(jìn)行.例如取n=26,則有如圖的結(jié)果,那么當(dāng)n=2015,求第2015次“F”運(yùn)算的結(jié)果是

查看答案和解析>>

同步練習(xí)冊(cè)答案