【題目】為響應(yīng)國家的號召,減少污染,某廠家生產(chǎn)出一種節(jié)能又環(huán)保的油電混合動力汽車,既可以用油做動力行駛,也可以用電做動力行駛.這種油電混合動力汽車從甲地行駛到乙地,若完全用油做動力行駛,費用為108元;若完全用電做動力行駛,費用為36元,已知汽車行駛中每千米用油的費用比用電的費用多06元.

1)求汽車行駛中每千米用電的費用和甲、乙兩地之間的距離.

2)若汽車從甲地到乙地采用油電混合動力行駛,且所需費用不超過60元,則至少需要用電行駛多少千米?

【答案】1)汽車行駛中每千米用電的費用是元,甲、乙兩地之間的距離是120千米;(2)至少需要用電行駛80千米.

【解析】

1)設(shè)汽車行駛中每千米用電的費用是元,則每千米用油的費用為元,根據(jù)題意,列出分式方程,并解方程即可;

2)先求出汽車行駛中每千米用油的費用,設(shè)汽車用電行駛,然后根據(jù)題意,列出一元一次不等式,即可求出結(jié)論.

解:(1)設(shè)汽車行駛中每千米用電的費用是元,則每千米用油的費用為元,

列方程得,

解得,

經(jīng)檢驗是原方程的解,

則甲、乙兩地之間的距離是千米.

答:汽車行駛中每千米用電的費用是元,甲、乙兩地之間的距離是千米.

2)汽車行駛中每千米用油的費用為元.

設(shè)汽車用電行駛

可得,

解得

答:至少需要用電行駛80千米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E是正方形ABCDAB的中點,連接CE,過點BBHCEFACG,ADH.下列說法 ;②點FGB的中點; ; 其中正確的結(jié)論的序號是_____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABCAC=BC,ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點D,過D點作⊙O的切線交AC于點E,連接B、D并延長交AC于點F.則下列結(jié)論錯誤的是( 。

A. ADE∽△ACO B. AOC∽△BFC

C. DEF∽△DOC D. CD2=DFDB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形中,,以為斜邊均向形外作等腰直角三角形,其面積分別是,且,則的值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過坐標原點,且與x軸交于A(﹣2,0).

(1)求此二次函數(shù)解析式及頂點B的坐標;

(2)在拋物線上有一點P,滿足SAOP=3,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】觀察下表:

x

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

y=x2﹣2x﹣2

﹣1.79

﹣1.56

﹣1.31

﹣1.04

﹣0.75

﹣0.44

﹣0.11

0.24

0.61

則一元二次方程x2﹣2x﹣2=0在精確到0.1時一個近似根是 ________ ,利用拋物線的對稱性,可推知該方程的另一個近似根是________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,如果BD,CE分別是∠ABC,ACB的平分線且他們相交于點P,設(shè)∠A=n°.

1)求∠BPC的度數(shù)(用含n的代數(shù)式表示),寫出推理過程.

2)當∠BPC=125°時,∠A= .

3)當n=60°時,EB=7,BC=12,DC的長為 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的高,角平分線,若.

1)求的度數(shù);

2)求的度數(shù);

3)若點為線段上任意一點,當為直角三角形時,則求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】的各邊,在邊的同側(cè)分別作三個正方形.他們分別是正方形,,,試探究:

如圖中四邊形是什么四邊形?并說明理由.

滿足什么條件時,四邊形是矩形?

滿足什么條件時,四邊形是正方形?

查看答案和解析>>

同步練習冊答案