【題目】某班數(shù)學(xué)興趣小組利用數(shù)學(xué)活動(dòng)課時(shí)間測量位于烈山山頂?shù)难椎鄣裣窀叨,已知烈山坡面與水平面的夾角為30°,山高857.5尺,組員從山腳D處沿山坡向著雕像方向前進(jìn)1620尺到達(dá)E點(diǎn),在點(diǎn)E處測得雕像頂端A的仰角為60°,求雕像AB的高度.

【答案】如圖,
過點(diǎn)E作EF⊥AC,EG⊥CD,
在Rt△DEG中,∵DE=1620,∠D=30°,
∴EG=DEsin∠D=1620× =810,
∵BC=857.5,CF=EG,
∴BF=BC﹣CF=47.5,
在Rt△BEF中,tan∠BEF=
∴EF= BF,
在Rt△AEF中,∠AEF=60°,設(shè)AB=x,
∵tan∠AEF= ,
∴AF=EF×tan∠AEF,
∴x+47.5=3×47.5,
∴x=95,
答:雕像AB的高度為95尺
【解析】構(gòu)造直角三角形,利用銳角三角函數(shù),進(jìn)行簡單計(jì)算即可.此題是解直角三角形﹣仰角俯角問題,主要考查了銳角三角函數(shù)的意義,解本題的關(guān)鍵是構(gòu)造直角三角形.
【考點(diǎn)精析】本題主要考查了關(guān)于仰角俯角問題的相關(guān)知識(shí)點(diǎn),需要掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,A(a,0),C(b,4),且滿足(a+4)2+=0,過CCBx軸于B

1)求三角形ABC的面積;

2)如圖2,若過BBDACy軸于D,且AE,DE分別平分∠CAB,∠ODB,求∠AED的度數(shù);

3)在y軸上是否存在點(diǎn)P,使得三角形ACP和三角形ABC的面積相等?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABC=90°AC=AD,MN分別為AC,CD的中點(diǎn),連結(jié)BM,MN

1)求證BM=MN;

2)若∠BCN=135°,求∠BMN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABDCADBC,E,FDB上兩點(diǎn)且BFDE,若∠AEB=120°,∠ADB=30°,則∠BCF= (  )

A. 150° B. 40° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有(

①在同一平面內(nèi)不相交的兩條線段必平行

②過兩條直線外一點(diǎn),一定可做直線,使,且

③過直線外一點(diǎn)有且只有一條直線與已知直線平行

④兩直線被第三條直線所截得的同旁內(nèi)角的平分線互相垂直

A. 0個(gè)B. 1個(gè)C. 2個(gè)D. 3個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC=90°,AB=4cmBC=8cm,EFAD,DC的中點(diǎn),連接EF、BEBF,已知四邊形ABCD的面積為36,△DEF的面積是△DAC面積的,求△BEF的面積_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=-3x3x軸,y軸分別交于A,B,兩點(diǎn),以AB為邊在第一象限內(nèi)作正方形ABCD,點(diǎn)D在反比例函數(shù)y (k≠0)的圖象上.

(1)k的值;

(2)若將正方形沿x軸負(fù)方向平移m個(gè)單位長度后,點(diǎn)C恰好落在該反比例函數(shù)的圖象上,則m的值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,的高,的角平分線,若,

1)求的度數(shù);

2)若點(diǎn)F為線段上任一點(diǎn),當(dāng)為直角三角形時(shí),求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,

請寫出各點(diǎn)的坐標(biāo).

若把向上平移2個(gè)單位,再向左平移1個(gè)單位得到,寫出、、的坐標(biāo),并在圖中畫出平移后圖形.

求出三角形ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案