【題目】如圖,△ABC中,點(diǎn)O為AC邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論。
【答案】(1)證明見解析;(2)證明見解析;(3)△ABC是直角三角形,證明見解析.
【解析】
試題分析:(1)根據(jù)CE平分∠ACB,MN∥BC,找到相等的角,即∠OEC=∠ECB,再根據(jù)等邊對(duì)等角得OE=OC,同理OC=OF,可得EO=FO.
(2)利用矩形的判定解答,即有一個(gè)內(nèi)角是直角的平行四邊形是矩形.
(3)利用已知條件及正方形的性質(zhì)解答.
試題解析:(1)∵CE平分∠ACB,
∴∠ACE=∠BCE,
∵MN∥BC,
∴∠OEC=∠ECB,
∴∠OEC=∠OCE,
∴OE=OC,
同理,OC=OF,
∴OE=OF.
(2)當(dāng)點(diǎn)O運(yùn)動(dòng)到AC中點(diǎn)處時(shí),四邊形AECF是矩形.
如圖AO=CO,EO=FO,
∴四邊形AECF為平行四邊形,
∵CE平分∠ACB,
∴∠ACE=∠ACB,
同理,∠ACF=∠ACG,
∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,
∴四邊形AECF是矩形.
(3)△ABC是直角三角形
∵四邊形AECF是正方形,
∴AC⊥EN,故∠AOM=90°,
∵MN∥BC,
∴∠BCA=∠AOM,
∴∠BCA=90°,
∴△ABC是直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面題目的計(jì)算過程:
=①
=x﹣4﹣2(x﹣2)②
=x﹣4﹣2x+4③
=﹣x④
(1)上述計(jì)算過程中,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出錯(cuò)誤步驟的序號(hào) ;
(2)錯(cuò)誤原因是 ;
(3)寫出本題的正確解法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED的外部時(shí),則∠A與∠1和∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )
A. 2∠A=∠1﹣∠2 B. 3∠A=2(∠1﹣∠2)
C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平行四邊形ABCD中,∠ABE=∠AEB,AE∥DF,DC是∠ADF的角平分線.下列說法正確的是( )
①BE=CF ②AE是∠DAB的角平分線 ③∠DAE+∠DCF=120°.
A. ① B. ①② C. ①②③ D. 都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,∠ABC=90,AE∥CD交BC于E,O是AC的中點(diǎn),AB=,AD=2,BC=3,下列結(jié)論:
①∠CAE=30;②AC=2AB;③S△ADC=2S△ABE;④BO⊥CD,其中正確的是()
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙P的圓心為P(﹣3,2),半徑為3,直線MN過點(diǎn)M(5,0)且平行于y軸,點(diǎn)N在點(diǎn)M的上方.
(1)在圖中作出⊙P關(guān)于y軸對(duì)稱的⊙P′.根據(jù)作圖直接寫出⊙P′與直線MN的位置關(guān)系.
(2)若點(diǎn)N在(1)中的⊙P′上,求PN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點(diǎn)M、N,點(diǎn)P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2 ,sin∠BCP= ,求點(diǎn)B到AC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(3,4).
(Ⅰ)如圖①,過點(diǎn)A作AB⊥x軸,垂足為B,則三角形AOB的面積為 ;
(Ⅱ)如圖②,將點(diǎn)A向右平移1個(gè)單位長度,再向下平移2個(gè)單位長度,得到點(diǎn)A′,若P是坐標(biāo)軸上的一點(diǎn),要使三角形POA′的面積等于三角形OAA′的面積的4倍,則點(diǎn)P的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),……,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過第100次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com