分析 (1)如圖連接AE.由△BEA≌△BEC,推出AE=EC=EF,∠BAE=∠BCE,由EF=EC,推出∠EFC=∠ECF,由∠BFE+∠EFC=180°,推出∠BAE+∠BFE=180°,推出∠ABC+∠AEF=360°-(∠BAE+∠BFE)=180°,由∠ABC=90°,推出∠AEF=90°,推出△AEF是等腰直角三角形,即可解決問題.
(2)延長BC到M,使得CM=BF,由△EFB≌△ECM,推出EB=EM,∠EBF=∠M=45°,推出△EBM是等腰直角三角形,推出BM=$\sqrt{2}$BE,由BF=CM,推出BC=FM=AB,推出AB+BF=FM+BF=BM=$\sqrt{2}$BE.
解答 證明:(1)如圖連接AE.
∵四邊形ABCD是正方形,
∴∠ABC=90°,∠ABD=∠CBD=45°,AB=CB,
在△BEA和△BEC中,
$\left\{\begin{array}{l}{BE=BE}\\{∠EBA=∠EBC}\\{BC=BA}\end{array}\right.$,
∴△BEA≌△BEC,
∴AE=EC=EF,∠BAE=∠BCE,
∵EF=EC,
∴∠EFC=∠ECF,
∵∠BFE+∠EFC=180°,
∴∠BAE+∠BFE=180°,
∴∠ABC+∠AEF=360°-(∠BAE+∠BFE)=180°,
∵∠ABC=90°,
∴∠AEF=90°,
∴△AEF是等腰直角三角形,
∴AF=$\sqrt{2}$AE.
(2)延長BC到M,使得CM=BF,
∵∠EFC=∠ECF,
∴∠EFB=∠ECM,
在△EFB和△ECM中,
$\left\{\begin{array}{l}{EF=EC}\\{∠EFB=∠ECM}\\{BF=CM}\end{array}\right.$,
∴△EFB≌△ECM,
∴EB=EM,∠EBF=∠M=45°,
∴△EBM是等腰直角三角形,
∴BM=$\sqrt{2}$BE,
∵BF=CM,
∴BC=FM=AB,
∴AB+BF=FM+BF=BM=$\sqrt{2}$BE,
點評 本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)、等腰直角三角形的性質(zhì)和判定等知識,解題的關(guān)鍵是學(xué)會添加輔助線,構(gòu)造全等三角形解決問題,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | -(-2)-(-3) | B. | (-2)×(-3) | C. | (-2)2 | D. | (-3)3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 20 | B. | -16 | C. | 20或-16 | D. | -20或16 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com