【題目】周老師為了了解學(xué)生自主學(xué)習(xí)、合作交流的具體情況,對本班部分學(xué)生進(jìn)行了為期半年的跟蹤調(diào)查,并將調(diào)查結(jié)果分成四類A:優(yōu);B:良;C:中;D:差.依據(jù)調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)本次調(diào)查中,周老師一共調(diào)查了______名學(xué)生;
(2)將統(tǒng)計圖補充完整;
(3)為了共同進(jìn)步,周老師想從被調(diào)查的A類和D類學(xué)生中分別選取一位同學(xué)進(jìn)行“一對一”幫扶,請用列表法或畫樹形圖的方法求所選的兩位同學(xué)恰好是兩位女同學(xué)的概率.
【答案】(1)40;(2)如圖所示:見解析;(3)所選的兩位同學(xué)恰好是兩位女同學(xué)的概率為.
【解析】
(1)依據(jù)B類的學(xué)生人數(shù)以及百分比即可得到調(diào)查的學(xué)生人數(shù);
(2)C類的學(xué)生人數(shù)為40×35%=14(人),其中男生有148=6(人);D類學(xué)生人數(shù)為40×7.5%=3(人),其中女生有31=2(人);A類學(xué)生人數(shù)所占的百分比為3÷40=7.5%;據(jù)此可將統(tǒng)計圖補充完整;
(3)根據(jù)樹狀圖可得,共有9種等可能的結(jié)果,其中所選的兩位同學(xué)恰好是兩位女同學(xué)的情況有2種,即可得到所選的兩位同學(xué)恰好是兩位女同學(xué)的概率.
(1)20÷50%=40(人)
故答案為:40;
(2)C類的學(xué)生人數(shù)為40×35%=14(人),其中男生有14-8=6(人);
D類學(xué)生人數(shù)為40×7.5%=3(人),其中女生有3-1=2(人);
A類學(xué)生人數(shù)所占的百分比為3÷40=7.5%;
如圖所示:
(3)畫樹狀圖如下:
共有9種等可能的結(jié)果,其中所選的兩位同學(xué)恰好是兩位女同學(xué)的情況有2種,
∴所選的兩位同學(xué)恰好是兩位女同學(xué)的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明星期天上午8:00從家出發(fā)到離家36千米的書城買書,他先從家出發(fā)騎公共自行車到公交車站,等了12分鐘的車,然后乘公交車于9:48分到達(dá)書城(假設(shè)在整個過程中小明騎車的速度不變,公交車勻速行駛,小明家、公交車站、書城依次在一條筆直的公路旁).如圖是小明從家出發(fā)離公交車站的路程y(千米)與他從家出發(fā)的時間x(時)之間的函數(shù)圖象,其中線段AB對應(yīng)的函教表達(dá)式為y=kx+6.
(1)求小明騎公共自行車的速度;
(2)求線段CD對應(yīng)的函數(shù)表達(dá)式;
(3)求出發(fā)時間x在什么范圍時,小明離公交車站的路程不超過3千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作⊙O交BC于點D.過點D作EF⊥AC,垂足為E,且交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)已知AB=4,AE=3.求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市預(yù)測某飲料有發(fā)展前途,用1600元購進(jìn)一批飲料,面市后果然供不應(yīng)求,又用6000元購進(jìn)這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2元.
(1)第一批飲料進(jìn)貨單價多少元?
(2)若二次購進(jìn)飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網(wǎng)格線交點處的三角形, 是一個格點三角形.
在圖中,請判斷與是否相似,并說明理由;
在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為2:1
在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,為坐標(biāo)原點.直線與拋物線同時經(jīng)過.
(1)求的值.
(2)點是二次函數(shù)圖象上一點,(點在下方),過作軸,與交于點,與軸交于點.求的最大值.
(3)在(2)的條件下,是否存在點,使和相似?若存在,求出點坐標(biāo),不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD,P為射線AB上的一點,以BP為邊作正方形BPEF,使點F在線段CB的延長線上,連接EA、EC.
(1)如圖1,若點P在線段AB的延長線上,求證:EA=EC;
(2)若點P在線段AB上,如圖2,當(dāng)點P為AB的中點時,判斷△ACE的形狀,并說明理由;
(3)在(1)的條件下,將正方形ABCD固定,正方形BPEF繞點B旋轉(zhuǎn)一周,設(shè)AB=4,BP=a,若在旋轉(zhuǎn)過程中△ACE面積的最小值為4,請直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某倉儲中心有一斜坡AB,其坡比為i=1∶2,頂部A處的高AC為4 m,B,C在同一水平面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方形貨柜的側(cè)面圖,其中DE=2.5 m,EF=2 m.將貨柜沿斜坡向上運送,當(dāng)BF=3.5 m時,求點D離地面的高.(≈2.236,結(jié)果精確到0.1 m)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com