【題目】如圖,在矩形ABCD中,AB=6,AD=8,矩形內(nèi)一動(dòng)點(diǎn)P使得S△PAD=S矩形ABCD,則點(diǎn)P到點(diǎn)A、D的距離之和PA+PD的最小值為_____.
【答案】8
【解析】
根據(jù)S△PAD=S矩形ABCD,得出動(dòng)點(diǎn)P在與AD平行且與AD的距離是4的直線l上,作A關(guān)于直線l的對稱點(diǎn)E,連接DE,BE,則DE的長就是所求的最短距離.然后在直角三角形ADE中,由勾股定理求得DE的值,即可得到PA+PD的最小值.
設(shè)△PAD中AD邊上的高是h.
∵S△PAD=S矩形ABCD,
∴ ADh=ADAB,
∴h=AB=4,
∴動(dòng)點(diǎn)P在與AD平行且與AD的距離是4的直線l上,
如圖,作A關(guān)于直線l的對稱點(diǎn)E,連接BE,DE,則DE的長就是所求的最短距離.
在Rt△ADE中,∵AD=8,AE=4+4=8,
DE= ,
即PA+PD的最小值為8 .
故答案8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于第一、三象限內(nèi)的,兩點(diǎn),與軸交于點(diǎn).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)直接寫出當(dāng)時(shí),的取值范圍;
(3)在軸上找一點(diǎn)使最大,求的最大值及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知雙曲線y=(k<0)經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(﹣6,4),則△AOC的面積為( 。
A. 12 B. 9 C. 6 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)了二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如3+2 =(1+)2.善于思考的小明進(jìn)行了以下探索:
設(shè)a+b=(m+n)2(其中a,b,m,n均為正整數(shù)),則有a+b=m2+2n2+2mn.
∴a=m2+2n2,b=2mn.這樣小明就找到了一種把部分形如a+b的式子化為平方式的方法.
請你仿照小明的方法探索并解決下列問題:
(1)當(dāng)a,b,m,n均為正整數(shù)時(shí),若a+b=(m+n)2,用含m,n的式子分別表示a,b,得a=__________,b=__________;
(2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:________+________=(________+________)2;
(3)若a+4=(m+n)2,且a,m,n均為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由邊長為1的小正方形組成的網(wǎng)格,直線是一條網(wǎng)格線,點(diǎn),在格點(diǎn)上,的三個(gè)頂點(diǎn)都在格點(diǎn)(網(wǎng)格線的交點(diǎn))上.
(1)作出關(guān)于直線對稱的;
(2)在直線上畫出點(diǎn),使四邊形的周長最;
(3)在這個(gè)網(wǎng)格中,到點(diǎn)和點(diǎn)的距離相等的格點(diǎn)有_________個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,F為對角線BD上一點(diǎn),點(diǎn)E在BA延長線上.
(1)如圖①,若F為矩形對角線AC、BD的交點(diǎn),點(diǎn)E在BA延長線上且BE=AC,連接DE,M是DE的中點(diǎn),連接BM,FM若AD=6,FM=,求線段AE的長;
(2)如圖②,過點(diǎn)F作FE⊥BD交AD于點(diǎn)H,交BA延長線于點(diǎn)E,連接AF,當(dāng)FD=FE時(shí),求證:HA+AB=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O分別切△ABC的三條邊AB、BC、CA于點(diǎn)D、E、F,S△ABC=10cm2,C△ABC=10cm且∠C=60°.求:
(1)⊙O的半徑r;
(2)扇形OEF的面積(結(jié)果保留π);
(3)扇形OEF的周長(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax 2+bx+c的頂點(diǎn)為M(1,4),與x軸的右交點(diǎn)為A,與y軸的交點(diǎn)為B,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對稱軸對稱,且S△ABC =3.
(1)求拋物線的解析式;
(2)點(diǎn)D是y軸上一點(diǎn),將點(diǎn)D繞C點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到點(diǎn)E,若點(diǎn)E恰好落在拋物線上,請直接寫出點(diǎn)D的坐標(biāo);
(3)設(shè)拋物線的對稱軸與直線AB交于點(diǎn)F,問:在x軸上是否存在點(diǎn)P,使得以P、A、F為頂點(diǎn)的三角形與△ABC相似?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com