【題目】人和人之間講友情,有趣的是,數(shù)與數(shù)之間也有相類似的關(guān)系. 若兩個不同的自然數(shù)的所有真因數(shù)(即除了自身以外的正約數(shù))之和相等,我們稱這兩個數(shù)為“親和數(shù)”. 例如:18的約數(shù)有1、2、3、6、9、18,它的真因數(shù)之和1+2+3+6+9=21;51的約數(shù)有1、3、17、51,它的真因數(shù)之和1+3+17=21,所以18和51為“親和數(shù)”. 數(shù)還可以與動物形象地聯(lián)系起來,我們稱一個兩頭(首位與末位)都是的數(shù)為“兩頭蛇數(shù)”.
(1)6的“親和數(shù)”為 ;將一個四位的“兩頭蛇數(shù)”去掉兩頭,得到一個兩位數(shù),它恰好是這個“兩頭蛇數(shù)”的約數(shù),求滿足條件的“兩頭蛇數(shù)”.
(2)已知兩個“親和數(shù)”的真因數(shù)之和都等于15,且這兩個“親和數(shù)”中較大的數(shù)能將一個正中間數(shù)位(百位)上的數(shù)為4的五位“兩頭蛇數(shù)”整除,若這個五位“兩頭蛇數(shù)”的千位上的數(shù)字小于十位上的數(shù)字,求滿足條件的“兩頭蛇數(shù)”.
【答案】(1)15,
(2)這個五位“兩頭蛇數(shù)”為:10461或11451或12441.
【解析】試題分析:(1)18的約數(shù)有1、2、3、6、9、18,它的真因數(shù)之和1+2+3+6+9=21;
試題解析:(1)6的約數(shù)有1、2、3、6,它的真因數(shù)之和1+2+3=6,所以6的親和數(shù)的約數(shù)有1和5,所以6的親和數(shù)為25;(2)我們可以把該數(shù)設(shè)為1ab1,則ab為它的一個約數(shù),即1ab1=1001+ab0是ab的一個倍數(shù),因?yàn)?/span>ab0肯定是ab的倍數(shù),則1001也應(yīng)為ab的一個倍數(shù),即ab應(yīng)為1001的一個約數(shù),1001的兩位數(shù)的約數(shù)有11,13,77,91,則所有可能的數(shù)為1111,1131,1771,1911;
(2)設(shè)這個四位“兩頭蛇數(shù)”為,由題意得:
∴一個四位的“兩頭蛇數(shù)”與它去掉兩頭后得到的兩位數(shù)的三倍能被7整除.
(2)∵16的真因數(shù)有:1,2,4,8
∴1+2+4+8=15
∵15=1+3+11
∴16的“親和數(shù)”為33
設(shè)這個五位“兩頭蛇數(shù)”為,由題意得:
∴這個五位“兩頭蛇數(shù)”為:10461或11451或12441
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,﹣),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊)
(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);
(2)若(1)中拋物線的對稱軸上有點(diǎn)P,使△ABP的面積等于△ABC的面積的2倍,求出點(diǎn)P的坐標(biāo);
(3)在(1)中拋物線的對稱軸l上是否存在一點(diǎn)Q,使AQ+CQ的值最?若存在,求AQ+CQ的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1:已知△ABC中,∠BAC=90°,AB=AC,在∠BAC內(nèi)部作∠MAN=45°.AM、AN分別交BC于點(diǎn)M,N.
(1)將△ABM繞點(diǎn)A逆時針旋轉(zhuǎn)90°,使AB邊與AC邊重合,把旋轉(zhuǎn)后點(diǎn)M的對應(yīng)點(diǎn)記作點(diǎn)Q,得到ACQ,請?jiān)趫D1中畫出△ACQ;(不寫出畫法)
(2)在(1)中作圖的基礎(chǔ)上,連接NQ,
①求證“MN=NQ”;
②寫出線段BM,MN和NC之間滿足的數(shù)量關(guān)系,并簡要說明理由.
(3)線段GS,ST和TH之間滿足的數(shù)量關(guān)系是
(4)設(shè)DK=a,DE=b,求DP的值.(用a,b表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(﹣1, ),B(2,0)在拋物線11:y=ax2+bx+1(a,b為常數(shù),且a≠0)上,直線12經(jīng)過拋物線11的頂點(diǎn)且與y軸垂直,垂足為點(diǎn)D.
(1)求l1的解析式,并寫出它的對稱軸和頂點(diǎn)坐標(biāo);
(2)設(shè)l1上有一動點(diǎn)P從點(diǎn)A出發(fā),沿拋物線從左向右運(yùn)動,點(diǎn)P的縱坐標(biāo)yp也隨之以每秒2個單位長的速度變化,設(shè)點(diǎn)P運(yùn)動的時間為t(秒),連接OP,以線段OP為直徑作⊙F.
①求yp關(guān)于t的表達(dá)式,并寫出t的取值范圍;
②當(dāng)點(diǎn)P在起點(diǎn)A處時,直線l2與⊙F的位置關(guān)系是 , 在點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)D的過程中,直線12與⊙F是否始終保持著上述的位置關(guān)系?請說明理由;
(3)在(2)條件下,當(dāng)點(diǎn)P開始從點(diǎn)A出發(fā),沿拋物線從左到右運(yùn)動時,直線l2同時向下平移,垂足D的縱坐標(biāo)yD以每秒3個單位長度速度變化,當(dāng)直線l2與⊙F相交時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在4×4正方形網(wǎng)格中,任選一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構(gòu)成一個軸對稱圖形的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC與BD相交于點(diǎn)O,E為OD的中點(diǎn),連接AE并延長交DC于點(diǎn)F,則S△DEF:S△AOB的值為( )
A.1:3
B.1:5
C.1:6
D.1:11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“書香校園”號召,重慶一中在九年級學(xué)生中隨機(jī)抽取某班學(xué)生對2016年全年閱讀中外名著的情況進(jìn)行調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),每名學(xué)生閱讀中外名著的本數(shù),最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了如圖所示的不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.
(1)該班學(xué)生共有 名,扇形統(tǒng)計(jì)圖中閱讀中外名著本數(shù)為7本所對應(yīng)的扇形圓心角的度數(shù)是 度,并補(bǔ)全折線統(tǒng)計(jì)圖;
(2)根據(jù)調(diào)查情況,班主任決定在閱讀中外名著本數(shù)為5本和8本的學(xué)生中任選兩名學(xué)生進(jìn)行交流,請用樹狀圖或表格求出這兩名學(xué)生閱讀的本數(shù)均為8本的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線y=kx+b經(jīng)過第二、三、四象限,則( )
A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com