【題目】已知點(diǎn)C是線段AB上一點(diǎn),在線段AB的同側(cè)作△CAD和△CBE,直線BD和AE相交于點(diǎn)F,CA=CD,CB=CE,∠ACD=∠BCE。
(1)如圖①,若∠ACD=600,則∠AFB=___________;若∠ACD=,則∠AFB=___________。
(2)如圖②,將圖①中的△CAD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),試探究∠AFB與的數(shù)量關(guān)系,并說明理由。
【答案】(1)120°;180°;(2) ∠AFB=180°.
【解析】
(1)由∠ACD=∠BCE得到∠ACE=∠DCB,通過證明△ACE≌△DCB得∠CBD=∠CEA,由三角形內(nèi)角和定理得到結(jié)論∠AFB=180°-,代入∠ACD=60°即可求解.
(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的內(nèi)角和定理得∠CAE=∠CDB,從而得出∠DFA=∠ACD,得到結(jié)論∠AFB=180°-.
(1)∵∠ACD=∠BCE=,則∠ACD+∠DCE=∠BCE+∠DCE,
即∠ACE=∠DCB.
在△ACE和△DCB中,
則△ACE≌△DCB(SAS).
則∠CBD=∠CEA,由三角形內(nèi)角和知∠EFB=∠ECB=.
∠AFB=180°∠EFB=180°.
故當(dāng)∠ACD=60°,∠AFB=180°60°=120°
故答案為:120°;180°;
(2)∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE.
∴∠ACE=∠DCB.
∴∠CAE=∠CDB.
∴∠DFA=∠ACD.
∴∠AFB=180°∠DFA=180°∠ACD=180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=45°,P為∠MON內(nèi)一點(diǎn),A為OM上一點(diǎn),B為ON上一點(diǎn),當(dāng)PAB的周長(zhǎng)取最小值時(shí),∠APB的度數(shù)為( )
A.80°B.90°C.110°D.120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于B,C兩點(diǎn),拋物線過點(diǎn)B,C.
(1)求b、c的值;
(2)若點(diǎn)D是拋物線在x軸下方圖象上的動(dòng)點(diǎn),過點(diǎn)D作x軸的垂線,與直線BC相交于點(diǎn)E.當(dāng)線段DE的長(zhǎng)度最大時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計(jì)劃一次性購(gòu)買排球和籃球,每個(gè)籃球的價(jià)格比排球貴30元;購(gòu)買2個(gè)排球和3個(gè)籃球共需340元.
(1)求每個(gè)排球和籃球的價(jià)格:
(2)若該校一次性購(gòu)買排球和籃球共60個(gè),總費(fèi)用不超過3800元,且購(gòu)買排球的個(gè)數(shù)少于39個(gè).設(shè)排球的個(gè)數(shù)為m,總費(fèi)用為y元.
①求y關(guān)于m的函數(shù)關(guān)系式,并求m可取的所有值;
②在學(xué)校按怎樣的方案購(gòu)買時(shí),費(fèi)用最低?最低費(fèi)用為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)D、E分別在△ACD的邊AB和AC上,已知DE∥BC,DE=DB.
(1)請(qǐng)用直尺和圓規(guī)在圖中畫出點(diǎn)D和點(diǎn)E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;
(2)若AB=7,BC=3,請(qǐng)求出DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC平分∠BAD,CE⊥AB于E 點(diǎn),∠ADC+∠B=180°.求證:
(1)BC=CD;
(2)2AE=AB+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是它的角平分線,G是AD上的一點(diǎn),BG,CG分別平分∠ABC,∠ACB,GH⊥BC,垂足為H,
求證:(1)∠BGC=90°+∠BAC;
(2)∠1=∠2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,點(diǎn)O是線段AD的中點(diǎn),分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點(diǎn)E,連接BC.求∠AEB的大;
(2)如圖2,△OAB固定不動(dòng),保持△OCD的形狀和大小不變,將△OCD繞點(diǎn)O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點(diǎn)A(4,3),與y軸的負(fù)半軸交于點(diǎn)B,且OA=OB.
(1)求一次函數(shù)y=kx+b和y=的表達(dá)式;
(2)已知點(diǎn)C在x軸上,且△ABC的面積是8,求此時(shí)點(diǎn)C的坐標(biāo);
(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個(gè)單位長(zhǎng)度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com