【題目】如圖,點O是等邊△ABC內(nèi)一點,∠BOC=,∠AOC=100°,將△BOC繞點B按逆時針方向旋轉60°得到△BDA,連接OD.
(1) 求證:△BOD是等邊三角形.
(2) 當=150°時,試判斷△AOD的形狀,并說明理由.
(3) 若△AOD是等腰三角形,請你直接寫出的度數(shù).
【答案】(1)證明見解析;(2)α=150°時,△AOD是直角三角形;理由見解析;(3)130°或100°或160°
【解析】
(1)根據(jù)旋轉的性質可得出OB=BD,∠OBD=60°,根據(jù)等邊三角形的判定即可求證;
(2)由(1)的結論可得∠BDO=60°;由于α=150°,所以∠ADB=∠BOC=150°,繼而可得∠ADO=∠ADB-∠ODB=90°,由∠AOC=100°,∠BOD=60°,可求出∠AOD=360°-∠α-∠AOC-∠COD=360°-150°-100°-60°=50°,根據(jù)三角形的內(nèi)角即可判定三角形的形狀;
(3)分AO=AD、AO=OD、DO=AD三種情況,根據(jù)等腰三角形的概念,三角形內(nèi)角和定理計算.
(1)證明:∵將△BOC繞點B按逆時針方向旋轉60°得△BDA,
∴BO=BD,∠OBD=60°,
∴△BOD是等邊三角形.
(2)解:當α=150°時,△AOD是直角三角形.理由是:
∵將△BOC繞點B按逆時針方向旋轉60°得△BDA,
∴△BOC≌△BDA,
∴∠ADB=∠BOC=150°,
又∵△BOD是等邊三角形,
∴∠ODB=60°,
∴∠ADO=∠ADB-∠ODB=90°,
∵∠α=150°,∠AOC=100°,∠BOD=60°,
∴∠AOD=360°-∠α-∠AOC-∠COD=360°-150°-100°-60°=50°,
∴△AOD不是等腰直角三角形,
即△AOD是直角三角形.
(3) ∵△BOD是等邊三角形,
∴∠ADO=α-60°,
∵OD=OA,
∴∠OAD=∠ODA=α-60°,
∴∠AOD=180°-2(α-60°),解得α=100°;
當OD=AD時,α+100°+60°+∠AOD=360°,
∠AOD= ,解得α=160°;
當OA=AD時,α+100°+60°+∠AOD=360°,∠AOD=α-60°,解得,α=130°
綜合可得:130°或100°或160°
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AC=BC,DC=EC,∠ACB=∠ECD=90°,且∠EBD=38°,則∠AEB=( )
A.52°B.90°C.128°D.38°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,則四邊形ABCD的面積為( 。
A. 15 B. 12.5 C. 14.5 D. 17
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的最大公里數(shù)(單位:km/L),如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述正確的是( )
A. 以相同速度行駛相同路程,甲車消耗汽油最多
B. 以10km/h的速度行駛時,消耗1升汽油,甲車最少行駛5千米
C. 以低于80km/h的速度行駛時,行駛相同路程,丙車消耗汽油最少
D. 以高于80km/h的速度行駛時,行駛相同路程,丙車比乙車省油
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,△ABC三個頂點的坐標分別為A(1,0),B(2,-3),C(4,-2).
(1)在圖中作出△ABC關于x軸對稱的圖形△A1B1C1.
(2)作出△A1B1C1向左平移4個單位長度后得到的△A2B2C2,并直接寫出點C2的坐標_____.
(3)△A2B2C2的面積是____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,,BD、CD分別平分∠ABC,∠ACB,過點D作直線平行于BC,分別交AB、AC于E、F,則的周長為 ( )
A.12B.13C.14D.15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數(shù)根.
其中正確結論的個數(shù)是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( 。
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,P是等邊三角形ABC內(nèi)一點,且PA=4,PB=,PC=2,以下五個結論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點P到△ABC三邊的距離分別為PE,PF,PG,則有 其中正確的有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com