【題目】如圖,已知直線與雙曲線交于、兩點(diǎn),且點(diǎn)的橫坐標(biāo)為4.

1)若雙曲線上一點(diǎn)的縱坐標(biāo)為8,求的面積;

2)過原點(diǎn)的另一條直線交雙曲線,兩點(diǎn)(點(diǎn)在第一象限),若由點(diǎn),為頂點(diǎn)組成的四邊形面積為24,求點(diǎn)的坐標(biāo).

【答案】1;(2)點(diǎn)的坐標(biāo)為.

【解析】

1)將x=4代入一次函數(shù)解析式求出y的值,確定出A的坐標(biāo),將A坐標(biāo)代入反比例解析式中求出k的值,即可確定出反比例解析式;將C縱坐標(biāo)代入反比例解析式求出橫坐標(biāo),確定出C坐標(biāo),即CDOD的長,三角形AAOC面積=三角形COD面積+梯形AEDC面積-三角形AOE面積,求出即可;

2)設(shè),即OM=m,PM=,分兩種情況考慮:若PA的左側(cè),如圖所示,作PMx軸,ANx軸,由四邊形APBQ面積為24,且為平行四邊形,得到三角形AOP面積為6,根據(jù)三角形POM面積+梯形ANMP面積-三角形AON面積,列出關(guān)于x的方程,求出方程的解得到x的值,確定出此時P的坐標(biāo);若PA的右側(cè),同理可得P的坐標(biāo).

1)∵點(diǎn)的橫坐標(biāo)為4

∴把代入中,得

∵點(diǎn)是直線與雙曲線的交點(diǎn)

∴雙曲線的解析式為

如圖所示,過點(diǎn)、分別作軸的垂線,垂足為

∵點(diǎn)在雙曲線

∴當(dāng)時,

∴點(diǎn)的坐標(biāo)為

∵點(diǎn)在雙曲線

2)∵反比例函數(shù)圖像是關(guān)于原點(diǎn)的中心對稱圖形

,

∴四邊形是平行四邊形

設(shè)點(diǎn)的橫坐標(biāo)為

過點(diǎn)、分別作軸的垂線,垂足為、

∵點(diǎn)在雙曲線上

,如圖所示:

,(舍去)

,如圖所示:

,(舍去)

∴點(diǎn)的坐標(biāo)為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐四邊形旋轉(zhuǎn)中的數(shù)學(xué)

“智慧”數(shù)學(xué)小組在課外數(shù)學(xué)活動中研究了一個問題,請幫他們解答.

任務(wù)一:如圖1,在矩形ABCD中,,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為矩形,連接CG

請直接寫出CG的長是______

如圖2,當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時針旋轉(zhuǎn)至點(diǎn)G落在邊AB上時,請計算DFCG的長,通過計算,試猜想DFCG之間的數(shù)量關(guān)系.

當(dāng)矩形AEGF繞點(diǎn)A旋轉(zhuǎn)至如圖3的位置時,DFCG之間的數(shù)量關(guān)系是否還成立?請說明理由.

任務(wù)二:“智慧”數(shù)學(xué)小組對圖形的旋轉(zhuǎn)進(jìn)行了拓展研究,如圖4,在ABCD中,,E,F分別為AB,AD邊的中點(diǎn),四邊形AEGF為平行四邊形,連接“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DFCG仍然存在著特定的數(shù)量關(guān)系.

如圖5,當(dāng)AEGF繞點(diǎn)A旋轉(zhuǎn)比如順時針旋轉(zhuǎn),其他條件不變時,“智慧”數(shù)學(xué)小組發(fā)現(xiàn)DFCG仍然存在著這一特定的數(shù)量關(guān)系請你直接寫出這個特定的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,假分?jǐn)?shù)可以化為整數(shù)與真分?jǐn)?shù)的和的形式.例如:.在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為假分式;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為真分式”.例如:像,這樣的分式是假分式;像 ,,這樣的分式是真分式.類似的,假分式也可以化為整式與真分式的和的形式. 例如:

.

1)將分式化為整式與真分式的和的形式;

2)如果分式的值為整數(shù),求x的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)絡(luò)中,ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A、B、C的坐標(biāo)分別為(24)、(2,0)、(4,1),結(jié)合所給的平面直角坐標(biāo)系解答下列問題:

(1)畫出ABC關(guān)于原點(diǎn)O對稱的A1B1C1.

(2)平移ABC,使點(diǎn)A移動到點(diǎn)A2(0,2),畫出平移后的A2B2C2并寫出點(diǎn)B2C2的坐標(biāo).

(3)在ABC、A1B1C1、A2B2C2中,A2B2C2 成中心對稱,其對稱中心的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將繞點(diǎn)A順時針旋轉(zhuǎn)到的位置,點(diǎn)B、O分別落在點(diǎn)處,點(diǎn)x軸上,再將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,點(diǎn)x軸上,將繞點(diǎn)順時針旋轉(zhuǎn)到的位置,點(diǎn)x軸上,依次進(jìn)行下去若點(diǎn),,則點(diǎn)的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,中,,點(diǎn)是邊上一點(diǎn),過點(diǎn)于點(diǎn)

如圖①,求證:;

如圖②,將繞點(diǎn)逆時針旋轉(zhuǎn)得到.連接

①若,求的長;

②若,在圖②的旋轉(zhuǎn)過程中,當(dāng)時,直接寫出旋轉(zhuǎn)角的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(0,6),B(8,0),AB=10,如圖作∠DBO=∠ABO,∠CAy=∠BAO,BD交y軸于點(diǎn)E,直線DO交AC于點(diǎn)C.

(1)①求證:△ACO≌△EDO;②求出線段AC、BD的位置關(guān)系和數(shù)量關(guān)系;

(2)動點(diǎn)P從A出發(fā),沿A﹣O﹣B路線運(yùn)動,速度為1,到B點(diǎn)處停止運(yùn)動;動點(diǎn)Q從B出發(fā),沿B﹣O﹣A運(yùn)動,速度為2,到A點(diǎn)處停止運(yùn)動.二者同時開始運(yùn)動,都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時刻,作PE⊥CD于點(diǎn)E,QF⊥CD于點(diǎn)F.問兩動點(diǎn)運(yùn)動多長時間時△OPE與△OQF全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中有一小島P,在距小島P海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c△ABC的三條邊,關(guān)于x的方程x2+x+c-a=0有兩個相等的實(shí)數(shù)根,方程3cx+2b=2a的根為x=0.

(1)試判斷△ABC的形狀;

(2)若a,b為方程x2+mx-3m=0的兩個根,求m的值.

查看答案和解析>>

同步練習(xí)冊答案