【題目】探究:如圖①, 在四邊形ABCD中,∠BAD=∠BCD=90°,AB=AD,AE⊥CD于點(diǎn)E.若AE=10,求四邊形ABCD的面積.
應(yīng)用:如圖②,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于點(diǎn)E.若AE=19,BC=10,CD=6,則四邊形ABCD的面積為 .
【答案】100;152.
【解析】整體分析:
探究:過點(diǎn)A作AF⊥CB,交CB的延長線于點(diǎn)F,證△AFB≌△AED,得四邊形AFCE是正方形;應(yīng)用,過點(diǎn)A作AG⊥CD的延長線于點(diǎn)G,連接AC,證△ABE≌△ADG,△AEC≌△AGC,求△AEC的面積,四邊形ABCD的面積=四邊形AECG的面積求解.
解:探究,過點(diǎn)A作AF⊥CB,交CB的延長線于點(diǎn)F.
∵AE⊥CD,∠BCD=,
∴四邊形AFCE為矩形.
∴∠FAE=.
∴∠FAB+∠BAE=.
∵∠EAD+∠BAE=,
∴∠FAB=∠EAD.
∵AB=AD,∠F=∠AED=,
∴△AFB≌△AED.
∴AF=AE.
∴四邊形AFCE為正方形.
∴====100.
應(yīng)用,過點(diǎn)A作AG⊥CD的延長線于點(diǎn)G,連接AC,
∴∠AEB=∠AGD=90°,
∵∠ABC+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠ABC=∠ADG,
又∵AB=AD,
∴△ABE≌△ADG,
∴AB=AG,BE=DG,
又∵AC=AC,
∴△AEC≌△AGC,
∴CE=CG,
∴BE=BC-CE=BC-CG=BC-CD-DG=BC-CD-BE,
∵BC=10,CD=6,
∴BE=2,∴EC=10-2=8,
∴S△AEC=×CE×AE=×8×19=76.
∴四邊形ABCD的面積=四邊形AECG的面積=2S△AEC.
∴四邊形ABCD的面積=2×76=152.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=﹣x2+1,直線y2=﹣x+1,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2.若y1≠y2,取y1,y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=2時(shí),y1=﹣3,y2=﹣1,y1<y2,此時(shí)M=﹣3.下列判斷中:
①當(dāng)x<0或x>1時(shí),y1<y2;
②當(dāng)x<0時(shí),M=y1;
③使得M=的x的值是﹣或;
④對(duì)任意x的值,式子=1﹣M總成立.
其中正確的是_____(填上所有正確的結(jié)論)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩同學(xué)從A地出發(fā),騎自行車在同一條路上行駛到距A地18千米的B地,他們離開A地的距離(千米)和行駛時(shí)間t(小時(shí))之間的函數(shù)關(guān)系圖象如圖所示. 根據(jù)題目和圖象提供的信息,下列說法正確的是( )
A. 乙比甲早出發(fā)半小時(shí) B. 乙在行駛過程中沒有追上甲
C. 乙比甲先到達(dá)B地 D. 甲的行駛速度比乙的行駛速度快
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC=4cm,將△ABC沿CA方向平移4cm得到△EFA,連接BE,BF;BE與AF交于點(diǎn)G
(1)判斷BE與AF的位置關(guān)系,并說明理由;
(2)若∠BEC=15°,求四邊形BCEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AC=2AB,點(diǎn)D是AC的中點(diǎn).將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個(gè)端點(diǎn)分別與A、D重合,連接BE、EC.
試猜想線段BE和EC的數(shù)量及位置關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖、點(diǎn)A、B分別為拋物線 、與y軸交點(diǎn),兩條拋物線都經(jīng)過點(diǎn)C(6,0)。點(diǎn)P、Q分別在拋物線 、 上,點(diǎn)P在點(diǎn)Q的上方,PQ平行y軸,設(shè)點(diǎn)P的橫坐標(biāo)為m。
(1)求b和c的值
(2)求以A、B、P、Q為頂點(diǎn)的四邊形是平行四邊形時(shí)m的值。
( 3 )當(dāng)m為何值是,線段PQ的長度取的最大值?并求出這個(gè)最大值。
(4)直接寫出線段PQ的長度隨m增大而減小的m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在□ABCD中,AB=13,BC=50,BC邊上的高為12.點(diǎn)P從點(diǎn)B出發(fā),沿B-A-D-A運(yùn)動(dòng),沿B-A運(yùn)動(dòng)時(shí)的速度為每秒13個(gè)單位長度,沿A-D-A運(yùn)動(dòng)時(shí)的速度為每秒8個(gè)單位長度.點(diǎn)Q從點(diǎn) B出發(fā)沿BC方向運(yùn)動(dòng),速度為每秒5個(gè)單位長度. P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒).連結(jié)PQ.
(1)當(dāng)點(diǎn)P沿A-D-A運(yùn)動(dòng)時(shí),求AP的長(用含t的代數(shù)式表示).
(2) 當(dāng)點(diǎn)P與點(diǎn)D重合時(shí),求t的值
(3)連結(jié)AQ,在點(diǎn)P沿B-A-D運(yùn)動(dòng)過程中,當(dāng)點(diǎn)P與點(diǎn)B、點(diǎn)A不重合時(shí),記△APQ的面積為S.求S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以下是兩張不同類型火車的車票:(“D×××次”表示動(dòng)車,“G×××次”表示高鐵):
(1)根據(jù)車票中的信息填空:兩車行駛方向 ,出發(fā)時(shí)刻 (填“相同”或“不同”);
(2)已知該動(dòng)車和高鐵的平均速度分別為200km/h,300km/h,如果兩車均按車票信息準(zhǔn)時(shí)出發(fā),且同時(shí)到達(dá)終點(diǎn),求A,B兩地之間的距離;
(3)在(2)的條件下,請(qǐng)求出在什么時(shí)刻兩車相距100km?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算
(1)1+(﹣1)+4﹣4
(2)﹣﹣(1﹣0.5)××[1﹣(﹣2)2]
(3)3x2y+xy2﹣3x2y﹣7xy2
(4)(5a﹣3b)﹣3(a﹣2b)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com