【題目】如圖,在菱形ABCD中,點(diǎn)E為邊AD的中點(diǎn),且∠ABC=60°,AB=6,BE交AC于點(diǎn)F,則AF=( )
A. 1 B. 2 C. 2.5 D. 3
【答案】B
【解析】
根據(jù)四邊形ABCD是菱形,證出△AEF∽△BCF,然后利用其對(duì)應(yīng)邊成比例即可求得AF與CF的比,又易知△ABC為等腰三角形,AC=AB=6,即可求出AF的長(zhǎng)度.
∵四邊形ABCD是菱形,∴AD∥BC,AD=BC,
根據(jù)定理“兩直線平行,內(nèi)錯(cuò)角相等”可知∠EAF=∠BCF,∠AEF=∠CBF,
又∵∠BFC=∠EFA,∴△BFC∽△EFA,
∴AF∶CF=AE∶CB=1∶2,
又∵△ABC中AB=BC,∠ABC=60°,
∴△ABC為等邊三角形,
∴AF+FC=BC=AB=6,
∴AF=AC=×6=2,所以答案選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB、AC、AD是⊙O的弦,弧BC=弧BD,CE⊥AB于M,交⊙O于E,交AD于F.
(1)如圖1,求證:AF=AC;
(2)如圖2,連接BF、AE、BE,交AD于H,求證:∠DAE=∠EBF;
(3)如圖3,連接BO,并延長(zhǎng)交AE于Q,交AD于點(diǎn)G,連接BC,若QG=4,F(xiàn)H=GF,tan∠BCE=1,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=4,DC=3,將△ADC按逆時(shí)針繞點(diǎn)A旋轉(zhuǎn)到△AEF(A、B、E在同一直線上),連接CF,則CF的長(zhǎng)為( )
A. B. 5 C. 7 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的轉(zhuǎn)盤,分成三個(gè)相同的扇形,指針位置固定轉(zhuǎn)動(dòng)轉(zhuǎn)盤后任其自由停止,其中的某個(gè)扇形會(huì)恰好停在指針?biāo)傅奈恢茫⑾鄳?yīng)得到一個(gè)數(shù)(指針指向兩個(gè)扇形的交線時(shí),當(dāng)作指向右邊的扇形).
(1)求事件“轉(zhuǎn)動(dòng)一次,得到的數(shù)恰好是0”發(fā)生的概率;
(2)寫出此情景下一個(gè)不可能發(fā)生的事件.
(3)用樹(shù)狀圖或列表法,求事件“轉(zhuǎn)動(dòng)兩次,第一次得到的數(shù)與第二次得到的數(shù)絕對(duì)值相等”發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著某市養(yǎng)老機(jī)構(gòu)(養(yǎng)老機(jī)構(gòu)指社會(huì)福利院、養(yǎng)老院、社區(qū)養(yǎng)老中心等)建設(shè)穩(wěn)步推進(jìn),擁有的養(yǎng)老床位不斷增加.
(1)該市的養(yǎng)老床位數(shù)從年底的萬(wàn)個(gè)增長(zhǎng)到年底的萬(wàn)個(gè),求該市這兩年(從年底到年底)擁有的養(yǎng)老床位數(shù)的平均年增長(zhǎng)率;
(2)若該市某社區(qū)今年準(zhǔn)備新建一養(yǎng)老中心,其中規(guī)劃建造三類養(yǎng)老專用房間共間,這三類養(yǎng)老專用房間分別為單人間(個(gè)養(yǎng)老床位),雙人間(個(gè)養(yǎng)老床位),三人間(個(gè)養(yǎng)老床位),因?qū)嶋H需要,單人間房間數(shù)在至之間(包括和),且雙人間的房間數(shù)是單人間的倍,設(shè)規(guī)劃建造單人間的房間數(shù)為.
①若該養(yǎng)老中心建成后可提供養(yǎng)老床位個(gè),求的值;
②直接寫出:該養(yǎng)老中心建成后最多提供養(yǎng)老床位 個(gè);最少提供養(yǎng)老床位 個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E為BC上一點(diǎn),AE⊥DE,∠DAE=30°,若DE=m+n,且m、n滿足m= + +2,試求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點(diǎn),以BD為直徑的⊙O經(jīng)過(guò)點(diǎn)E,且交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合探究:
(1)如圖1,AB是⊙O的直徑,點(diǎn)C、D在上, .若AB=13,BC=12,直接寫出CD的長(zhǎng);
(2)如圖2,AB、CD是⊙O的兩條互相垂直的直徑,E是劣弧AD上一點(diǎn),AE的延長(zhǎng)線交CD的延長(zhǎng)線于F,過(guò)O作OG∥AE交CE于G,求AE:CG的值;
(3)如圖3,∠ACB=90°,AC=BC,點(diǎn)P為AB的中點(diǎn).若點(diǎn)E滿足AE=AC,CE=CA,點(diǎn)Q為AE的中點(diǎn),則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一棟居民樓AB的高為16米,遠(yuǎn)處有一棟商務(wù)樓CD,小明在居民樓的樓底A處測(cè)得商務(wù)樓頂D處的仰角為,又在商務(wù)樓的樓頂D處測(cè)得居民樓的樓頂B處的俯角為.其中A、C兩點(diǎn)分別位于B、D兩點(diǎn)的正下方,且A、C兩點(diǎn)在同一水平線上,求商務(wù)樓CD的高度.
(參考數(shù)據(jù): , .結(jié)果精確到0.1米)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com