精英家教網 > 初中數學 > 題目詳情

【題目】1)如圖,AE是∠MAD的平分線,點CAE上一點,點BAM上一點,在AD上求作一點P,使得△ABC≌△APC,請保留清晰的作圖痕跡.

2)如圖a,在△ABC, ACB=,∠A=,BE、CF分別是∠ABC和∠ACB的角平分線,CFBE相交于點O.請?zhí)骄烤段BC、BF、CE之間的關系,直接寫出結論,不要求證明.

3)如圖b,若(2)中∠ACB為任意角,其它條件不變,請?zhí)骄?/span>BC、BF、CE之間又有怎樣的關系,請證明你的結論.

【答案】1)答案見解析;(2BC=BF+CE,證明見解析;(3BC=BF+CE,證明見解析.

【解析】

1)以點A為圓心,以AB長為半徑畫弧交AD于一點即可;

(2)在BC上截取BD=BF,首先證明△BFO≌△BDO,創(chuàng)造條件證明△COE≌△COD即可;
(3)在BC上截取BF'=BF,首先證明△BFO≌△BF'O,創(chuàng)造條件證明△COE≌△COF'即可.

1)以點A為圓心,以AB長為半徑畫弧交AD于一點,則此點為所要求的點P.

2)線段BC、BFCE之間的關系為:BC=BF+CE .

BC上截取BD=BF.

在△BFO和△BDO

∴△BFO≌△BDO

∴∠BOF=BOD

∵∠A=,BE、CF分別是∠ABC和∠ACB的角平分線,CFBE相交于點O.

∴∠BOC=180ОABCACB=18060=120

∴∠BOD=BOF=COE=180120 =60.

COD=BOC-∠BOD=12060=60

在△COE和△COD

∴△COE≌△COD

CE=CD

BC=BF+CE .

3)線段BC、BF、CE之間的關系為:BC=BF+CE .

BC上截取BF'=BF.

在△BFO和△BF'O

∴△BFO≌△BF'O

∴∠BOF=BOF'

∵∠A=60BE、CF分別是∠ABC和∠ACB的角平分線,CFBE相交于點O.

∴∠BOC=180ОABCACB=18060=120

∴∠BOF'=BOF=COE=180120=60.

COF'=BOC-∠BOF'=12060 =60

在△COE和△COF'

∴△COE≌△COF'

CE=CF'

BC=BF+CE .

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AEABAEAB,BCCDBCCD,請按圖中所標注的數據,計算圖中實線所圍成的面積S是(

A.50B.62C.65D.68

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小紅駕車從甲地到乙地,她出發(fā)第xh時距離乙地ykm,已知小紅駕車中途休息了1小時,圖中的折線表示她在整個駕車過程中yx之間的函數關系.

1B點的坐標為(    );

2)求線段AB所表示的yx之間的函數表達式;

3)小紅休息結束后,以60km/h的速度行駛,則點D表示的實際意義是 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形的邊長為8,點是邊上一動點(不與點重合),以為邊在的下方作等邊三角形,連接.

1)在運動的過程中,有何數量關系?請說明理由.

2)當BE=4時,求的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線軸交于兩點(點軸的正半軸上),與軸交于點,矩形的一條邊在線段上,頂點,分別在線段上.

求點,,的坐標;

若點的坐標為,矩形的面積為,求關于的函數表達式,并指出的取值范圍;

當矩形的面積取最大值時,

①求直線的解析式;

②在射線上取一點,使,若點恰好落在該拋物線上,則________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】《九章算術》是中國傳統數學最重要的著作,奠定了中國傳統數學的基本框架其中卷第九“勾股”章主要講述了以測量問題為中心的直角三角形三邊互求的關系其中記載:“今有邑,東西七里,南北九里,各中開門出東門一十五里有木,問:出南門幾何步而見木?”譯文:“如圖,今有一座長方形小城,東西向城墻長7,南北向城墻長9,各城墻正中均開一城門走出東門15里處有棵大樹問走出南門多少步恰好能望見這棵樹?”(注:1里=300)你的計算結果是:出南門________步而見木

 

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線l1y=2x+8與坐標軸分別交于AB兩點,點Cx正半軸上,且OA=OC.點P為線段AC(不含端點)上一動點,將線段OP繞點O逆時針旋轉90°,得線段OQ(見圖2

1)分別求出點B、點C的坐標;

2)如圖2,連接AQ,求證:OAQ=45°;

3)如圖2,連接BQ,試求出當線段BQ取得最小值時點Q的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:在△ABC中,AC=BC=4,∠ACB=120°,將一塊足夠大的直角三角尺PMN(∠M=90°,∠MPN=30°)按如圖放置,頂點P在線段AB上滑動,三角尺的直角邊PM始終經過點C,并且與CB的夾角∠PCB=α,斜邊PNAC于點D.

(1)當PN∥BC時,判斷△ACP的形狀,并說明理由;

(2)點P在滑動時,當AP長為多少時,△ADP△BPC全等,為什么?

(3)點P在滑動時,△PCD的形狀可以是等腰三角形嗎?若可以,請求出夾角α的大。蝗舨豢梢,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正比例函數y=(2m+4)x,求:

(1)m為何值時,函數圖象經過第一、三象限?

(2)m為何值時,y隨x的增大而減?

(3)m為何值時,點(1,3)在該函數的圖象上?

查看答案和解析>>

同步練習冊答案