【題目】如圖1,菱形ABCD中,∠A=60°,點(diǎn)P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運(yùn)動(dòng)到D終止,點(diǎn)Q從A與P同時(shí)出發(fā),沿邊AD勻速運(yùn)動(dòng)到D終止,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.

(1)求點(diǎn)Q運(yùn)動(dòng)的速度;
(2)求圖2中線段FG的函數(shù)關(guān)系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

【答案】
(1)

解:由題意,可知題圖2中點(diǎn)E表示點(diǎn)P運(yùn)動(dòng)至點(diǎn)B時(shí)的情形,所用時(shí)間為3s,則菱形的邊長AB=2×3=6cm.

此時(shí)如答圖1所示:

AQ邊上的高h(yuǎn)=ABsin60°=6× = cm,

S=SAPQ= AQh= AQ× = ,解得AQ=3cm,

∴點(diǎn)Q的運(yùn)動(dòng)速度為:3÷3=1cm/s.


(2)

解:由題意,可知題圖2中FG段表示點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí)的情形.如答圖2所示:

點(diǎn)Q運(yùn)動(dòng)至點(diǎn)D所需時(shí)間為:6÷1=6s,點(diǎn)P運(yùn)動(dòng)至點(diǎn)C所需時(shí)間為12÷2=6s,至終點(diǎn)D所需時(shí)間為18÷2=9s.

因此在FG段內(nèi),點(diǎn)Q運(yùn)動(dòng)至點(diǎn)D停止運(yùn)動(dòng),點(diǎn)P在線段CD上繼續(xù)運(yùn)動(dòng),且時(shí)間t的取值范圍為:6≤t≤9.

過點(diǎn)P作PE⊥AD交AD的延長線于點(diǎn)E,則PE=PDsin60°=(18﹣2t)× = t+

S=SAPQ= ADPE= ×6×( t+ )= t+ ,

∴FG段的函數(shù)表達(dá)式為:S= t+ (6≤t≤9).


(3)

解:菱形ABCD的面積為:6×6×sin60°=

當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示.

此時(shí)△APQ的面積S= AQAPsin60°= t2t× = t2

根據(jù)題意,得 t2= × ,

解得t= s(舍去負(fù)值);

當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示.

此時(shí),有S梯形ABPQ= S菱形ABCD,即 (2t﹣6+t)×6× = × ,

解得t= s.

∴存在t= 和t= ,使PQ將菱形ABCD的面積恰好分成1:5的兩部分.


【解析】(1)根據(jù)函數(shù)圖象中E點(diǎn)所代表的實(shí)際意義求解.E點(diǎn)表示點(diǎn)P運(yùn)動(dòng)到與點(diǎn)B重合時(shí)的情形,運(yùn)動(dòng)時(shí)間為3s,可得AB=6cm;再由SAPQ= ,可求得AQ的長度,進(jìn)而得到點(diǎn)Q的運(yùn)動(dòng)速度;(2)函數(shù)圖象中線段FG,表示點(diǎn)Q運(yùn)動(dòng)至終點(diǎn)D之后停止運(yùn)動(dòng),而點(diǎn)P在線段CD上繼續(xù)運(yùn)動(dòng)的情形.如答圖2所示,求出S的表達(dá)式,并確定t的取值范圍;(3)當(dāng)點(diǎn)P在AB上運(yùn)動(dòng)時(shí),PQ將菱形ABCD分成△APQ和五邊形PBCDQ兩部分,如答圖3所示,求出t的值;
當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),PQ將菱形分為梯形ABPQ和梯形PCDQ兩部分,如答圖4所示,求出t的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABC=45°,E、F分別在CD和BC的延長線上,AEBD,EFC=30°, AB=2.

求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:(﹣1)20170﹣( 1+
(2)化簡:(1+ )÷

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列一元一次方程解應(yīng)用題:

某管道由甲、乙兩工程隊(duì)單獨(dú)施工分別需要30天、20.

(1)如果兩隊(duì)從管道兩端同時(shí)施工,需要多少天完工?

(2)又知甲隊(duì)單獨(dú)施工每天需付200元施工費(fèi),乙隊(duì)單獨(dú)施工每天需付280元施工費(fèi),那么是由甲隊(duì)單獨(dú)施工,還是由乙隊(duì)單獨(dú)施工,還是由兩隊(duì)同時(shí)施工?請你按照少花錢多辦事的原則,設(shè)計(jì)一個(gè)方案,并通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對(duì)角線ACBD相交于點(diǎn)O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋(gè)條件使矩形ABCD為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】考試前,同學(xué)們總會(huì)采用各種方式緩解考試壓力,以最佳狀態(tài)迎接考試.某校對(duì)該校九年級(jí)的部分同學(xué)做了一次內(nèi)容為最適合自己的考前減壓方式的調(diào)查活動(dòng),學(xué)校將減壓方式分為五類,同學(xué)們可根據(jù)自己的情況必選且只選其中一類.學(xué)校收集整理數(shù)據(jù)后,繪制了圖1和圖2兩幅不完整的統(tǒng)計(jì)圖,請根據(jù)統(tǒng)計(jì)圖中信息解答下列問題:

(1)這次抽樣調(diào)查中,一共抽查了多少名學(xué)生?

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;

(3)請計(jì)算扇形統(tǒng)計(jì)圖中享受美食所對(duì)應(yīng)扇形的圓心角的度數(shù);

(4)根據(jù)調(diào)查結(jié)果,估計(jì)該校九年級(jí)500名學(xué)生中采用聽音樂來減壓方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】骰子是一種特別的數(shù)字立方體(見右圖),它符合規(guī)則:相對(duì)兩面的點(diǎn)數(shù)之和總是7,下面四幅圖中可以折成符合規(guī)則的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解答題
(1)解不等式組 并把它的解集在數(shù)軸上表示出來.
(2)解方程 =1﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】水果店王阿姨到水果批發(fā)市場打算購進(jìn)一種水果銷售,經(jīng)過還價(jià),實(shí)際價(jià)格每千克比原來少2元,發(fā)現(xiàn)原來買這種水果80千克的錢,現(xiàn)在可買88千克.
(1)現(xiàn)在實(shí)際購進(jìn)這種水果每千克多少元?
(2)王阿姨準(zhǔn)備購進(jìn)這種水果銷售,若這種水果的銷售量y(千克)與銷售單價(jià)x(元/千克)滿足如圖所示的一次函數(shù)關(guān)系. ①求y與x之間的函數(shù)關(guān)系式;
②請你幫王阿姨拿個(gè)主意,將這種水果的銷售單價(jià)定為多少時(shí),能獲得最大利潤?最大利潤是多少?(利潤=銷售收入﹣進(jìn)貨金額)

查看答案和解析>>

同步練習(xí)冊答案