【題目】有一塊直角三角形綠地,量得兩直角邊長分別為3m,4m,現(xiàn)在要將綠地擴充成等腰三角形,且擴充時只能延長兩條直角邊中的一條,則擴充后等腰三角形綠地的面積為m2 .
【答案】8或10或12或 或
【解析】解:①如圖1:
當(dāng)BC=CD=3m時;
由于AC⊥BD,則AB=AD=5m;
此時等腰三角形綠地的面積: ×6×4=12(m2);
②如圖2:
當(dāng)AC=CD=4m時;
∵AC⊥CB,
此時等腰三角形綠地的面積: ×4×4=8(m2);
③圖3:
當(dāng)AD=BD時,設(shè)AD=BD=xm;
Rt△ACD中,BD=xm,CD=(x﹣3)m;
由勾股定理,得AD2=DC2+CA2 , 即(x﹣3)2+42=x2 ,
解得x= ;
此時等腰三角形綠地的面積: ×BD×AC= × ×4= (m2).
④如圖4,
延長BC到D使BD等于5m,
此時AB=BD=5m,
故CD=2m,
BDAC= ×5×4=10(m2).
⑤如圖5,
延長AC到D使AD等于5m,
此時AB=AD=5m,
故BC=3m,
BCAD= ×5×3= (m2).
所以答案是:8或10或12或 或 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:△ABC在正方形網(wǎng)格中
(1)請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
(2)請畫出△ABC關(guān)于點O對稱的△A2B2C2;
(3)在直線MN上求作一點P,使△PAB的周長最小,請畫出△PAB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點P向左平移1個單位,再向上平移2個單位得到點Q,點Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是 ;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點,且與反比例函數(shù)圖象交于C,D兩點(點C在第二象限內(nèi)),過點C作CE⊥x軸于點E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.
(1)求證:PA是⊙O的切線;
(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AGAB=12,求AC的長;
(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市甲、乙兩個汽車銷售公司,去年一至十月份每月銷售同種品牌汽車的情況如圖所示:
(1)請你根據(jù)上圖填寫下表.
銷售公司 | 平均數(shù) | 方差 | 中位數(shù) | 眾數(shù) |
甲 | 9 | |||
乙 | 9 | 17.0 | 8 |
(2)請你從以下兩個不同的方面對甲、乙兩個汽車銷售公司去年一至十月份的銷售情況進行分析:①從平均數(shù)和方差結(jié)合看;②從折線圖上甲、乙兩個汽車銷售公司銷售數(shù)量的趨勢看(分析哪個汽車銷售公司較有潛力).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是雙曲線在第三象限分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內(nèi),且隨著點A的運動,點C的位置也在不斷變化,但點C始終在雙曲線上運動,則k的值是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com