【題目】如圖,二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對(duì)稱軸為直線x=﹣1.
①c>0;②2a﹣b=0;③<0;④若點(diǎn)B(﹣,y1),C(﹣,y2)為函數(shù)圖象上的兩點(diǎn),則y1>y2;四個(gè)結(jié)論中正確的是_____.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC,延長△ABC的各邊分別到點(diǎn)D、E、F使得AE=BF=CD,順次連接D、E、F,求證:△DEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)你站在博物館的展覽廳中時(shí),你知道站在何處觀賞最理想嗎?如圖,設(shè)墻壁上的展品最高點(diǎn)P距地面2.5米,最低點(diǎn)Q距地面2米,觀賞者的眼睛F距地面1.6米,當(dāng)視角∠PEQ最大時(shí),站在此處觀賞最理想,則此時(shí)E到墻壁的距離為( )米.
A. 1 B. 0.6 C. 0.5 D. 0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a、b、c是△ABC中∠A、∠B、∠C的對(duì)邊,拋物線y=x2﹣2ax+b2交x軸于M(a+c,0),則△ABC是( )
A. 等腰三角形 B. 等邊三角形 C. 直角三角形 D. 不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,點(diǎn)P是邊上的動(dòng)點(diǎn)(不與點(diǎn)A,B重合).把沿過點(diǎn)P的直線l折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)D,折痕為.
(1)若點(diǎn)D恰好在邊上.
①如圖1,當(dāng)時(shí),連結(jié),求證:.
②如圖2,當(dāng),且,,求與的周長差.
(2)如圖3,點(diǎn)P在邊上運(yùn)動(dòng)時(shí),若直線l始終垂直于,的面積是否變化?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c過原點(diǎn)O和B(﹣4,4),且對(duì)稱軸為直線x=.
(1)求拋物線的函數(shù)表達(dá)式;
(2)D是直線OB下方拋物線上的一動(dòng)點(diǎn),連接OD,BD,在點(diǎn)D運(yùn)動(dòng)過程中,當(dāng)△OBD面積最大時(shí),求點(diǎn)D的坐標(biāo)和△OBD的最大面積;
(3)如圖2,若點(diǎn)P為平面內(nèi)一點(diǎn),點(diǎn)N在拋物線上,且∠NBO=∠ABO,則在(2)的條件下,直接寫出滿足△POD∽△NOB的點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,BO、CO 分別平分∠ABC、∠ACB,DE 經(jīng)過點(diǎn) O, 且 DE∥BC,DE 分別交 AB、AC 于 D、E,則圖中等腰三角形的個(gè)數(shù)為( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點(diǎn),且DE=DF,連結(jié)BF,CE.下列說法①△BDF≌△CDE;②△ABD和△ACD面積相等;③BF∥CE;④CE=BF.其中正確的有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com