【題目】先化簡,再求值:(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=1,b=﹣1.
【答案】解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,
當(dāng)a=1,b=﹣1時(shí),原式=﹣5.
【解析】原式利用完全平方公式,以及單項(xiàng)式乘以多項(xiàng)式法則計(jì)算,去括號(hào)合并得到最簡結(jié)果,把a(bǔ)與b的值代入計(jì)算即可求出值.
【考點(diǎn)精析】利用單項(xiàng)式乘多項(xiàng)式對(duì)題目進(jìn)行判斷即可得到答案,需要熟知單項(xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配律用單項(xiàng)式去乘多項(xiàng)式的每一項(xiàng),再把所得的積相加.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過A(2,1),B(-1,-2)兩點(diǎn),則不等式-2<kx+b<1的解集為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a,b,c是直角三角形的三條邊長,斜邊c上的高的長是h,給出下列結(jié)論:
①以a2 , b2 , c2的長為邊的三條線段能組成一個(gè)三角形;②以,,的長為邊的三條線段能組成一個(gè)三角形;③以a+b,c+h,h的長為邊的三條線段能組成直角三角形;④以,,的長為邊的三條線段能組成直角三角形,正確結(jié)論的序號(hào)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
()請直接寫出袋子中白球的個(gè)數(shù).
()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)E是AD邊上一點(diǎn),BE=BC.
(1)求證:EC平分∠BED.
(2)過點(diǎn)C作CF⊥BE,垂足為點(diǎn)F,連接FD,與EC交于點(diǎn)O,求FD·EC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題發(fā)現(xiàn):
()如圖①,點(diǎn)為平行四邊形內(nèi)一點(diǎn),請過點(diǎn)畫一條直線,使其同時(shí)平分平行四邊形的面積和周長.
問題探究:
()如圖②,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上,點(diǎn) 坐標(biāo)為.已知點(diǎn)為矩形外一點(diǎn),請過點(diǎn)畫一條同時(shí)平分矩形面積和周長的直線,說明理由并求出直線,說明理由并求出直線被矩形截得線段的長度.
問題解決:
()如圖③,在平面直角坐標(biāo)系中,矩形的邊、分別在軸、軸正半軸上, 軸, 軸,且, ,點(diǎn)為五邊形內(nèi)一點(diǎn).請問:是否存在過點(diǎn)的直線,分別與邊與交于點(diǎn)、,且同時(shí)平分五邊形的面積和周長?若存在,請求出點(diǎn)和點(diǎn)的坐標(biāo):若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com