【題目】如圖,在ABC中,ABAC,點DE,F分別在邊BCAC,AB上,且BDCEDCBF,連結(jié)DE,EFDF,∠160°

1)求證:BDF≌△CED

2)判斷ABC的形狀,并說明理由.

【答案】1)見解析;(2ABC是等邊三角形,理由見解析

【解析】

(1)用SAS定理證明三角形全等;(2)由BDF≌△CED得到∠BFD=∠CDE,然后利用三角形外角的性質(zhì)求得∠B=∠160°,從而判定△ABC的形狀.

解:(1)證明:∵ABAC

∴∠B=∠C,

BDFCED,

∴△BDF≌△CEDSAS);

2ABC是等邊三角形,理由如下:

由(1)得:BDF≌△CED,

∴∠BFD=∠CDE

∵∠CDF=∠B+BFD=∠1+CDE,

∴∠B=∠160°,

ABAC,

∴△ABC是等邊三角形;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:如圖,點為線段外一動點,且,若,連接,求的最大值.解決方法:以為邊作等邊,連接,推出,當點的延長線上時,線段取得最大值

問題解決:如圖,點為線段外一動點,且,若,,連接,當取得最大值時,的度數(shù)為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖①,四邊形ABCD、CEFG均為正方形.易知BE=DG

探究:如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG

應用:如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點GAD的延長線上.若AE=3ED, ∠A=∠F,△EBC的面積為8,則菱形CEFG的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)因式分解:

2)解方程:

3)先化簡:,然后,四個數(shù)中選一個你認為合適的數(shù)代入求值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是O的直徑,BC為O的切線,D為O上的一點,CD=CB,延長CD交BA的延長線于點E.

(1)求證:CD為O的切線;

(2)若BD的弦心距OF=1,ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某通訊公司推出①②兩種通訊收費方式供用戶選擇,其中一種有月租費,另一種無月租費,且兩種收費方式的通訊時間x()與費用y()之間的函數(shù)關系如圖所示.

(1)有月租的收費方式是________(”),月租費是________元;

(2)分別求出①,②兩種收費方式中y與自變量x之間的函數(shù)表達式;

(3)請你根據(jù)用戶通訊時間的多少,給出經(jīng)濟實惠的選擇建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:小騰遇到這樣一個問題:如圖1,在ABC中,點D在線段BC上,BAD=75°,CAD=30°,AD=2,BD=2DC,求AC的長.

小騰發(fā)現(xiàn),過點C作CEAB,交AD的延長線于點E,通過構(gòu)造ACE,經(jīng)過推理和計算能夠使問題得到解決(如圖 2).

請回答:ACE的度數(shù)為 ,AC的長為

參考小騰思考問題的方法,解決問題:

如圖 3,在四邊形 ABCD中,BAC=90°,CAD=30°,ADC=75°,AC與BD交于點E,AE=2,BE=2ED,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一空曠場地上設計一落地為矩形ABCD的小屋,AB+BC10m.拴住小狗的10m長的繩子一端固定在B點處,小狗在不能進入小屋內(nèi)的條件下活動,其可以活動的區(qū)域面積為Sm2).①如圖1,若BC4m,則S m2.②如圖2,現(xiàn)考慮在(1)中的矩形ABCD小屋的右側(cè)以CD為邊拓展一正△CDE區(qū)域,使之變成落地為五邊形ABCED的小屋,其它條件不變則在BC的變化過程中,當S取得最小值時,邊BC的長為 m

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋中裝有5個黃球、13個黑球和22個紅球,它們除顏色外都相同。

1)求從袋中摸出一個球是黃球的概率;

2)現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后,使從袋中摸出一個球是黃球的概率不小于,問至少取出了多少個黑球?

查看答案和解析>>

同步練習冊答案