【題目】如圖,在RtABC中,∠ACB90°,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長(zhǎng)DEF,使得AFCD,連接BF、CF

1)求證:四邊形AFCD是菱形;

2)當(dāng)AC4,BC3時(shí),求BF的長(zhǎng).

【答案】1)證明見(jiàn)解析;(2

【解析】

1)根據(jù)鄰邊相等的平行四邊形是菱形即可證明;

2)如圖,作FHBCBC的延長(zhǎng)線于H.在RtBFH中,根據(jù)勾股定理計(jì)算即可.

1)∵AFCD,∴∠EAF=ECD

EAC中點(diǎn),∴AE=EC

在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四邊形AFCD是平行四邊形.

∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四邊形AFCD是菱形.

2)如圖,作FHBCBC的延長(zhǎng)線于H

∵四邊形AFCD是菱形,∴ACDF,EF=DEBC,∴∠H=ECH=CEF=90°,∴四邊形FHCE是矩形,∴FH=EC=2EF=CH,BH=CH+BC

RtBHF中,BF

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,每個(gè)小正方形的邊長(zhǎng)都為1的頂點(diǎn)都在格點(diǎn)上,回答下列問(wèn)題:

可以看作是經(jīng)過(guò)若干次圖形的變化平移、軸對(duì)稱、旋轉(zhuǎn)得到的,寫出一種由得到的過(guò)程:______

畫出繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)的圖形;

中,點(diǎn)C所形成的路徑的長(zhǎng)度為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)A、C為半徑是8的圓周上兩動(dòng)點(diǎn),點(diǎn)B的中點(diǎn),以線段BABC為鄰邊作菱形ABCD,頂點(diǎn)D恰在該圓半徑的中點(diǎn)上,則該菱形的邊長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)填空:如圖,我們知道,一條線段OA繞著它的一個(gè)端點(diǎn)O旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)所形成的圖形叫做 ;一個(gè)矩形ABCD繞著它的邊AB旋轉(zhuǎn)一周所形成的圖形叫做 ;

2)如圖,將一個(gè)直角三角形ABC(∠C=900)繞著它的直角邊AC旋轉(zhuǎn)一周,也能形成一個(gè)幾何圖形。

a)在圖中畫出這個(gè)旋轉(zhuǎn)圖形的草圖,并說(shuō)出它的名稱。

b)如果ΔABCAC=20BC=15,把這個(gè)旋轉(zhuǎn)圖形沿著ΔABC的中位線DE且垂直于AC的方向橫截,得到一個(gè)什么樣的圖形?并請(qǐng)你計(jì)算所截圖形的上半部分的全面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(-2,3)、B(-6,0)、C(-1,0).

(1)畫出將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°圖形.

(2)填空:以A、B、C為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線ABx軸、y軸分別交于點(diǎn)A,B,與反比例函數(shù)(為常數(shù),且)在第一象限的圖象交于點(diǎn)E,F(xiàn).過(guò)點(diǎn)E作EMy軸于M,過(guò)點(diǎn)F作FNx軸于N,直線EMFN交于點(diǎn)C.若(為大于l的常數(shù)).記CEF的面積為OEF的面積為,則 =________ (用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究同一坐標(biāo)系中系數(shù)互為倒數(shù)的正、反比例函數(shù)的圖象性質(zhì)小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)這兩個(gè)函數(shù)當(dāng)時(shí)的圖象性質(zhì)進(jìn)行了探究設(shè)函數(shù)圖象的交點(diǎn)為A、下面是小明的探究過(guò)程:

1)如圖所示,若已知A的坐標(biāo)為,則B點(diǎn)的坐標(biāo)為______

2)若A的坐標(biāo)為,P點(diǎn)為第一象限內(nèi)雙曲線上不同于點(diǎn)B的任意一點(diǎn).

①設(shè)直線PAx軸于點(diǎn)M,直線PBx軸于點(diǎn)求證:

證明過(guò)程如下:設(shè),直線PA的解析式為

解得

所以,直線PA的解析式為______

請(qǐng)把上面的解答過(guò)程補(bǔ)充完整,并完成剩余的證明.

②當(dāng)P點(diǎn)坐標(biāo)為時(shí),判斷的形狀,并用k表示出的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(4,),且與y軸交于點(diǎn)C(0,2),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊).

(1)求拋物線的解析式及A,B兩點(diǎn)的坐標(biāo);

(2)在(1)中拋物線的對(duì)稱軸l上是否存在一點(diǎn)P,使AP+CP的值最?若存在,求AP+CP的最小值,若不存在,請(qǐng)說(shuō)明理由;

(3)在以AB為直徑的M相切于點(diǎn)E,CE交x軸于點(diǎn)D,求直線CE的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線ACBD相交于點(diǎn)O,OAB是等邊三角形.

1)求證:ABCD為矩形;

2)若AB4,求ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案