【題目】如圖①,已知四邊形是正方形點分別在邊上,且是等腰直角三角形
此時與有怎樣的數(shù)關系和位關系?請直接寫出結論,不用證明
如圖②,正方形繞點順時針旋轉一個銳角后,連接,此時與仍有中的關系嗎?如果成立,請說明理由.否則,請舉出反例;
將正方形由圖①的位置開始,繞點順時針旋轉一周,在旋轉的過程中,當點和點之間的距離達到最小和最大時,旋轉的角度分別是多少?請直接 寫出結果.
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】
(1)根據(jù)等腰直角三角形性質可得,即(2)根據(jù)正方形性質和等腰三角形性質,證,得,延長交于點,交于點,根據(jù)全等三角形性質得,在和中有;(3)根據(jù)旋轉性質,當A,E,B三點在同一直線上時,AE存在最大值和最小值.
(1)根據(jù)等腰直角三角形性質可得,
所以
仍有成立;
理由:四邊形是正方形
是等腰直角三角形
在和中
,,
延長交于點,交于點
則
在和中,
根據(jù)旋轉性質,當A,E,B三點在同一直線上時,AE存在最大值和最小值,此時當點E在AB之間時,AE最小,旋轉的角度是;當點B在AE之間時,AE最大,旋轉的角度是
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動點,PE⊥AB于E,PF⊥AC于F,則EF的最小值為( )
A. 2B. 2.2C. 2.4D. 2.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點是直線上的一點,,平分.
(1)如圖1,若,求的度數(shù);
(2)如圖1中,若,直接寫出的度數(shù)(用含的式子表示);
(3)將圖1中的繞頂點逆時針旋轉至圖2的位置,其他條件不變,那么(2)中的求的結論是否還成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲騎電動車、乙騎摩托車都從M地出發(fā),沿一條筆直的公路勻速前往N地,甲先出發(fā)一段時間后乙再出發(fā),甲、乙兩人到達N地后均停止騎行.已知M、N兩地相距km,設甲行駛的時間為x(h),甲、乙兩人之間的距離為y(km),表示y與x函數(shù)關系的部分圖象如圖所示.請你解決以下問題:
(1)求線段BC所在直線的函數(shù)表達式;
(2)求點A的坐標,并說明點A的實際意義;
(3)根據(jù)題目信息補全函數(shù)圖象.(須標明相關數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,,,點E從點B出發(fā),沿BC邊運動到點C,連結DE,過點E作DE的垂線交AB于點F.
求證:;
求BF的最大值;
如圖2,在點E的運動過程中,以EF為邊,在EF上方作等邊,求邊EG的中點H所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,要測量一個沼澤水潭的寬度.現(xiàn)由于不能直接測量,小軍是這樣操作的:他在平地上選取一點C,該點可以直接到達A與B點,接著他量出AC和BC的距離,并找出AC與BC的中點E、F,連接EF,測量EF的長,于是他便知道了水潭AB的長等于2EF,小軍的做法有道理嗎?說明理由.你還有比小軍更簡單的方法嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了倡導節(jié)約能源,自某日起,我國對居民用電采用階梯電價,為了使大多數(shù)家庭不增加電費支出,事前就需要了解居民全年月平均用電量的分布情況,制訂一個合理的方案.某調查人員隨機調查了市戶居民全年月平均用電量(單位:千瓦時)數(shù)據(jù)如下:
得到如下頻數(shù)分布表:
全年月平均用電量/千時 | 頻數(shù) | 頻率 |
合計 |
畫出頻數(shù)分布直方圖,如下:
(1)補全數(shù)分布表和率分布直方圖
(2)若是根據(jù)數(shù)分布表制成扇形統(tǒng)計圖,則不低于千瓦時的部分圓心角的度數(shù)為_____________;
(3)若市的階梯電價方案如表所示,你認為這個階梯電價方案合理嗎?
檔次 | 全年月平均用電量/千瓦時 | 電價(元/千瓦時) |
第一檔 | ||
第二檔 | ||
第三檔 | 大于 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=4,BC=6,∠B=60°,將△ABC沿射線BC的方向平移,得到△A′B′C′,再將△A′B′C′繞點A′逆時針旋轉一定角度后,點B′恰好與點C重合,則平移的距離和旋轉角的度數(shù)分別為( )
A.4,30° B.2,60° C.1,30° D.3,60°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com