【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結論:①4ac<b2; ②3a+c>0;③方程 的兩個根是x1=﹣1,x2=3;④當y>0時,x的取值范圍是﹣1<x<3⑤當x>0時,y隨x的增大而減小.其中結論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
【答案】B
【解析】分析:①根據(jù)拋物線與x軸的交點個數(shù)判斷;②由對稱軸方程得到a與b的關系,再根據(jù)x=-1時的函數(shù)值變形;③拋物線與x軸的兩個交點關于拋物線的對稱軸對稱;④根據(jù)函數(shù)值大于0確定自變量的取值范圍;⑤二次函數(shù)的增減性在對稱軸的左側與右側不相同.
詳解:①因為拋物線與x軸有兩個交點,所以b2-4ac>0,即4ac<b2,則①正確;
②因為對稱軸為x=1,所以,則b=-2a,當x=-1時,a-b+c=0,所以a+2a+c=0,則3a+c=0,則②錯誤;
③因為x1+x2=2,x1=-1,所以x2=3,則③正確;
④拋物線與x軸的兩個交點的坐標是(-1,0),(3,0),開口向下,所以當y>0時,x的取值范圍是﹣1<x<3,則④正確;
⑤因為拋物線開口向下,所以當x>1時,y隨x的增大而減小,則⑤錯誤.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】設A(x1,y1)、B(x2,y2)是拋物線y=2x2+4x﹣2上的點,坐標系原點O位于線段AB的中點處,則AB的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前,步行已成為人們最喜愛的健身方法之一,通過手機可以計算行走的步數(shù)與相應的能量消耗.對比手機數(shù)據(jù)發(fā)現(xiàn):小瓊步行步與小剛步行步消耗的能量相同,若每消耗千卡能量小瓊行走的步數(shù)比小剛多步,求小剛每消耗千卡能量需要行走多少步?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將一副直角三角板(,)按圖1方式擺放(即與重合、與共線).
(1)如圖2,當繞點旋轉至時,求的度數(shù):
(2)若繞點以每秒的速度順時針旋轉,回到起始位置停止,設旋轉時間為t,當t為何值時,(與始終不共線);
(3)若繞點以每秒的速度順時針旋轉的同時,也繞點以每秒的速度順時針旋轉,當回到起始位置時全都停止旋轉.設旋轉時間為t,在運動過程中,當t為何值時,的邊所在直線恰好平分?試直接寫出t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將進價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當?shù)慕祪r措施.調查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:小明遇到這樣一個問題:
如圖一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想線段AD與DC數(shù)量關系.小明發(fā)現(xiàn)可以用下面方法解決問題:作DE⊥BC交BC于點E:
(1)根據(jù)閱讀材料可得AD與DC的數(shù)量關系為__________.
(2)如圖二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想線段AD與DC的數(shù)量關系,并證明你的猜想.
(3)如圖三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想線段AD與BD、BC的數(shù)量關系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在Rt△ABC中,∠C=90°,AB=10,BC=6,點P從點A出發(fā),沿折線AB﹣BC向終點C運動,在AB上以每秒5個單位長度的速度運動,在BC上以每秒3個單位長度的速度運動,點Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動,P,Q兩點同時出發(fā),當點P停止時,點Q也隨之停止.設點P運動的時間為t秒.
(1)求線段AQ的長;(用含t的代數(shù)式表示)
(2)連結PQ,當PQ與△ABC的一邊平行時,求t的值;
(3)如圖②,過點P作PE⊥AC于點E,以PE,EQ為鄰邊作矩形PEQF.設矩形PEQF與△ABC重疊部分圖形的面積為S.直接寫出點P在運動過程中S與t之間的函數(shù)關系式和自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,以點A為圓心,1為半徑作圓,E是⊙A上的任意一點,將DE繞點D按逆時針旋轉90°,得到DF,連接AF,則AF的最小值是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com