【題目】直線(xiàn)與雙曲線(xiàn)交于點(diǎn),點(diǎn),與坐標(biāo)軸分別交于點(diǎn)和點(diǎn),.
(1)求直線(xiàn)的解析式.
(2)在軸上求出點(diǎn),使以為頂點(diǎn)的三角形與相似.
【答案】(1).(2)點(diǎn)坐標(biāo)為,或.
【解析】
(1)將代入雙曲線(xiàn),求出,即得.作軸于,軸于,根據(jù)平行線(xiàn)分線(xiàn)段成比例,可得. 將代入雙曲線(xiàn),求出的值,即得.利用待定系數(shù)法直接求出直線(xiàn)的解析式.
(2)分兩種情況討論,①當(dāng)∽,即與重合時(shí),②當(dāng)∽時(shí),即是⊥ 可得∽,結(jié)合已知先求出的長(zhǎng),再求出的長(zhǎng),繼而求出的長(zhǎng),即可求出點(diǎn)的坐標(biāo).
(1)解:將代入雙曲線(xiàn),得.
∴. ∴.
作軸于,軸于
∴,.
∵ ,∴.
∴.
將代入雙曲線(xiàn),得.
∴. ∴.
將,代入直線(xiàn),得
解得,
直線(xiàn)的解析式為 y= ;
(2)解:如圖,①由(1),點(diǎn)符合。
, ∴∽.
此時(shí).
②當(dāng)時(shí),∽.
此時(shí),∽.
∴..
,∴.
由,得.
∴∴ ∴.
∴ ∴ ∴.
∴.
綜上,滿(mǎn)足條件的點(diǎn)坐標(biāo)為,或.
故答案為:(1).(2)點(diǎn)坐標(biāo)為,或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=ax2+bx+c與x軸交于點(diǎn)A(﹣2,0),點(diǎn)B(4,0),與y軸交于點(diǎn)C(0,8),連接BC,又已知位于y軸右側(cè)且垂直于x軸的動(dòng)直線(xiàn)l,沿x軸正方向從O運(yùn)動(dòng)到B(不含O點(diǎn)和B點(diǎn)),且分別交拋物線(xiàn)、線(xiàn)段BC以及x軸于點(diǎn)P,D,E.
(1)求拋物線(xiàn)的表達(dá)式;
(2)連接AC,AP,當(dāng)直線(xiàn)l運(yùn)動(dòng)時(shí),求使得△PEA和△AOC相似的點(diǎn)P的坐標(biāo);
(3)作PF⊥BC,垂足為F,當(dāng)直線(xiàn)l運(yùn)動(dòng)時(shí),求Rt△PFD面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】開(kāi)學(xué)初期,天氣炎熱,水杯需求量大.雙福育才中學(xué)門(mén)口某超市購(gòu)進(jìn)一批水杯,其中A種水杯進(jìn)價(jià)為每個(gè)15元,售價(jià)為每個(gè)25元;B種水杯進(jìn)價(jià)為每個(gè)12元,售價(jià)為每個(gè)20元
(1)該超市平均每天可售出60個(gè)A種水杯,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),A種水杯單價(jià)每降低1元,則平均每天的銷(xiāo)量可增加10個(gè).為了盡量讓學(xué)生得到更多的優(yōu)惠,某天該超市將A種水杯售價(jià)調(diào)整為每個(gè)m元,結(jié)果當(dāng)天銷(xiāo)售A種水杯獲利630元,求m的值.
(2)該超市準(zhǔn)備花費(fèi)不超過(guò)1600元的資金,購(gòu)進(jìn)A、B兩種水杯共120個(gè),其中B種水杯的數(shù)量不多于A種水杯數(shù)量的兩倍.請(qǐng)為該超市設(shè)計(jì)獲利最大的進(jìn)貨方案,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的對(duì)角線(xiàn)、相交于點(diǎn),的平分線(xiàn)交于點(diǎn),交于點(diǎn).若,則____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在矩形中,,,以點(diǎn)為坐標(biāo)原點(diǎn),所在的直線(xiàn)為軸,建立直角坐標(biāo)系.
(Ⅰ)將矩形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)至矩形,如圖1,經(jīng)過(guò)點(diǎn),求旋轉(zhuǎn)角的大小和點(diǎn),的坐標(biāo);
(Ⅱ)將圖1中矩形沿直線(xiàn)向左平移,如圖2,平移速度是每秒1個(gè)單位長(zhǎng)度.
①經(jīng)過(guò)幾秒,直線(xiàn)經(jīng)過(guò)點(diǎn);
②設(shè)兩矩形重疊部分的面積為,運(yùn)動(dòng)時(shí)間為,寫(xiě)出重疊部分面積與時(shí)間之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,AB=3,點(diǎn)M在CD的邊上,且DM=1,ΔAEM與ΔADM關(guān)于AM所在的直線(xiàn)對(duì)稱(chēng),將ΔADM按順時(shí)針?lè)较蚶@點(diǎn)A旋轉(zhuǎn)90°得到ΔABF,連接EF,則線(xiàn)段EF的長(zhǎng)為( )
A. 3 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了創(chuàng)建國(guó)家級(jí)衛(wèi)生城區(qū),某社區(qū)在九月份購(gòu)買(mǎi)了甲、乙兩種綠色植物共1100盆,共花費(fèi)了27000元.已知甲種綠色植物每盆20元,乙種綠色植物每盆30元.
(1)該社區(qū)九月份購(gòu)買(mǎi)甲、乙兩種綠色植物各多少盆?
(2)十月份,該社區(qū)決定再次購(gòu)買(mǎi)甲、兩種綠色植物.已知十月份甲種綠色植物每盆的價(jià)格比九月份的價(jià)格優(yōu)惠元,十月份乙種綠色植物每盆的價(jià)格比九月份的價(jià)格優(yōu)惠.因創(chuàng)衛(wèi)需要,該社區(qū)十月份購(gòu)買(mǎi)甲種綠色植物的數(shù)量比九月份的數(shù)量增加了,十為份購(gòu)買(mǎi)乙種綠色植物的數(shù)量比九月份的數(shù)量增加了.若該社區(qū)十月份的總花費(fèi)與九月份的總花費(fèi)恰好相同,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校開(kāi)展“我最喜愛(ài)的一項(xiàng)體育活動(dòng)”調(diào)查,要求每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了m名學(xué)生,并將其結(jié)果繪制成如下不完整的條形圖和扇形圖.
請(qǐng)結(jié)合以上信息解答下列問(wèn)題:
(1)m= ;
(2)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)在圖2中,“乒乓球”所對(duì)應(yīng)扇形的圓心角的度數(shù)為 ;
(4)已知該校共有1200名學(xué)生,請(qǐng)你估計(jì)該校約有 名學(xué)生最喜愛(ài)足球活動(dòng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com