【題目】如圖,已知∠AOB內(nèi)部有三條射線,OE平分∠AOD,OC平分∠BOD.
(1)若∠AOB=90°,求∠EOC的度數(shù);
(2)若∠AOB=α,求∠EOC的度數(shù);
(3)如果將題中“平分”的條件改為∠EOA=∠AOD,∠DOC=∠DOB,∠AOD=50°,且∠AOB=90°,求∠EOC的度數(shù).
【答案】(1)45°;(2);(3)70°
【解析】
(1)根據(jù)角平分線的定義以及角的和差定義計算即可;
(2)利用(1)中結(jié)論計算即可;
(3)分別求出∠EOD,∠DOC即可解決問題;
(1)∵OE平分∠AOD,OC平分∠BOD,
∴∠EOD=∠AOD,∠DOC=∠DOB,
∴∠EOC=(∠AOD+∠DOB)=45°.
(2)由(1)可知:∠EOC=(∠AOD+∠DOB)=α.
(3)∵∠AOB=90°,∠AOD=50°,
∴∠DOB=40°,
∵∠EOA=∠AOD,∠DOC=∠DOB,
∴∠DOE=∠AOD=40°,∠DOC=∠DOB=30°,
∴∠EOC=∠EOD+∠DOC=70°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小玉有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列問題:
-3 -5 0 +3 +4
(1)從中抽出2張卡片,使這2張卡片上的數(shù)字的乘積最大,則應(yīng)如何抽取?最大的乘積是多少?
(2)從中抽出2張卡片,使這2張卡片上的數(shù)字相除的商最小,則應(yīng)如何抽取?最小的商是多少?
(3)從中抽出2張卡片,使這2張卡片上的數(shù)字經(jīng)過加、減、乘、除、乘方中的一種運算后,組成一個最大的數(shù),則應(yīng)如何抽取?最大的數(shù)是多少?
(4)從中抽出4張卡片,用學過的運算方法,要使結(jié)果為24,則應(yīng)如何抽取?寫出運算式子(一種即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賽季中國職業(yè)籃球聯(lián)賽第11輪前四名球隊積分榜如下:
隊名 | 比賽場次 | 勝場 | 負場 | 積分 |
遼寧 | 11 | 11 | 0 | 22 |
北京 | 11 | 10 | 1 | 21 |
廣廈 | 11 | 9 | 2 | 20 |
新疆 | 11 | 8 | 3 | 19 |
(1)若一個隊勝m場,則總積分為_____;
(2)某隊的勝場總積分能否等于它的負場總積分,你的觀點是:_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在同一平面內(nèi)OA⊥OB,OC是OA繞點O順時針方向旋轉(zhuǎn)α(α<90°)度得到,OD平分∠BOC,OE平分∠AOC.
(1)若α=60即∠AOC=60°時,求∠BOC,∠DOE.
(2)在α的變化過程中,∠DOE的度數(shù)是一個定值嗎?若是定值,請求出這個值;若不是定值,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,一次函數(shù)y=(1-3k)x+2k-1,試回答:
(1)k為何值時,y隨x的增大而減。
(2)k為何值時,圖像與y軸交點在x軸上方?
(3) 若一次函數(shù)y=(1-3k)x+2k-1經(jīng)過點(3,4).請求出一次函數(shù)的表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的袋子里裝有3個黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來數(shù)的前提下,小明為估計其中白球數(shù),采用如下辦法:隨機從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機摸出一球,記下顏色,…不斷重復上述過程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計口袋中白球大約有()
A.10個
B.12 個
C.15 個
D.18個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】讀圖并回答下列問題:
(1)過點A的直線有哪幾條?
(2)以O為端點的射線有哪幾條?
(3)寫出圖中所有的線段.
(4)∠ABC是哪兩個角的和?
(5)比較線段AB,OB的長短.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數(shù)的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據(jù)學習以上知識的經(jīng)驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.
下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)①將不等式按條件進行轉(zhuǎn)化: 當x=0時,原不等式不成立;
當x>0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1> ;
當x<0時,原不等式可以轉(zhuǎn)化為x2+4x﹣1< ;
②構(gòu)造函數(shù),畫出圖象
設(shè)y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數(shù)的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個函數(shù)圖象公共點的橫坐標 觀察所畫兩個函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗證可知:滿足y3=y4的所有x的值為
(3)借助圖象,寫出解集 結(jié)合(1)的討論結(jié)果,觀察兩個函數(shù)的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩條直線相交,只有1個交點,三條直線相交,最多有3個交點,四條直線相交,最多有6個交點,10條直線相交,最多有( )個交點.
A. 45 B. 42 C. 40 D. 36
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com